【題目】如圖1,在平面直角坐標(biāo)系中,為原點(diǎn),拋物線經(jīng)過三點(diǎn),且其對(duì)稱軸為其中點(diǎn),點(diǎn)

1)求拋物線的解析式;

2)①如圖(1),點(diǎn)是直線上方拋物線上的動(dòng)點(diǎn),當(dāng)四邊形的面積取最大值時(shí),求點(diǎn)的坐標(biāo);

②如圖(2),連接在拋物線上有一點(diǎn)滿足,請(qǐng)直接寫出點(diǎn)的橫坐標(biāo).

【答案】1;(2)①D,②

【解析】

1)根據(jù)點(diǎn),點(diǎn),利用待定系數(shù)法,可得函數(shù)解析式;
(2)①先求出直線BC的解析式,當(dāng)直線m與拋物線只有一個(gè)交點(diǎn)時(shí),點(diǎn)D到BC的距離最遠(yuǎn),此時(shí)△BCD取最大值,故四邊形DCAB有最大值,求出b的值代入原式即可得到答案;
②根據(jù)題干條件拋物線上有一點(diǎn)滿足,通過利用待定系數(shù)法利用方程組求出直線BE的解析式,可得答案.

解:(1)由題意得:

解得

故拋物線的解析式是.

圖(1 圖(2

2)①設(shè)直線BC的解析式為y=kx+.

∵直線BC過點(diǎn)B3,0),

0=3k+

k=,

故直線BC解析式為y=x+.

設(shè)直線m解析式為,且直線m∥直線BC

當(dāng)直線m與拋物線只有一個(gè)交點(diǎn)時(shí),點(diǎn)DBC的距離最遠(yuǎn),此時(shí)BCD取最大值,故四邊形DCAB有最大值.

,

當(dāng)時(shí)

直線m與拋物線有唯一交點(diǎn)

解之得:

代入原式可求得:

D

圖(3

DDPy軸交CB于點(diǎn)P,DCB面積=DPC面積+DPB面積,

∴D

②存在,點(diǎn)M的橫坐標(biāo)為

解題提示:如圖3

符合條件的直線有兩條: CM1CM2(分別在CB的上方和下方)

∵在RtACO中,∠ACO=30°,在RtCOB中,∠CBO=30°,

∴∠BCM1=BCM2=15°

∵△BCE中,∠BCE=BEC2=15°

BC=BE=

E,0

設(shè)直線CE解析式為:

解之得:k=

∴直線CE解析式為:

解得:x1=0,x2=21

RtOCF中,∠CBO=30°,∠BCF=15°

∴在RtCOF中, CFO=45°

OC=OF=

F,0

∴直線CF的解析式為

解之得:(舍去),

即點(diǎn)M的橫坐標(biāo)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,AB=6,點(diǎn)E在邊CD上,CE=2DE,將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,將矩形繞點(diǎn)旋轉(zhuǎn)得到矩形點(diǎn)的運(yùn)動(dòng)路徑為.當(dāng)點(diǎn)落在上時(shí),圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)企業(yè)信息化發(fā)展水平,從該地區(qū)中隨機(jī)抽取50家企業(yè)調(diào)研,針對(duì)體現(xiàn)企業(yè)信息化發(fā)展水平的AB兩項(xiàng)指標(biāo)進(jìn)行評(píng)估,獲得了它們的成績(十分制),并對(duì)數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息.

aA項(xiàng)指標(biāo)成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,):

bA項(xiàng)指標(biāo)成績?cè)?/span>這一組的是:

7.2 7.3 7.5 7.67 7.7 7.71 7.75 7.82 7.86 7.9 7.92 7.93 7.97

c兩項(xiàng)指標(biāo)成績的平均數(shù)、中位數(shù)、眾數(shù)如下:

平均數(shù)

中位數(shù)

眾數(shù)

A項(xiàng)指標(biāo)成績

7.37

m

8.2

B項(xiàng)指標(biāo)成績

7.21

7.3

8

根據(jù)以上信息,回答下列問題:

1)寫出表中m的值

2)在此次調(diào)研評(píng)估中,某企業(yè)A項(xiàng)指標(biāo)成績和B項(xiàng)指標(biāo)成績都是7.5分,該企業(yè)成績排名更靠前的指標(biāo)是______________(填AB),理由是_____________;

3)如果該地區(qū)有500家企業(yè),估計(jì)A項(xiàng)指標(biāo)成績超過7.68分的企業(yè)數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O上依次有A、BC三點(diǎn),BO的延長線交OE,,過點(diǎn)CCDABBE的延長線于D,連ADO于點(diǎn)F

1)求證:四邊形ABCD是菱形;

2)連接OAOF

當(dāng)∠ABC   °時(shí),點(diǎn)F 的中點(diǎn);

若∠AOF3FOEAF3,則O的半徑是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把某矩形紙片ABCD沿EF、GH折疊(點(diǎn)E、HAD邊上,點(diǎn)FGBC邊上),使得點(diǎn)B、點(diǎn)C落在AD邊上同一點(diǎn)P處,A點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),D點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),若,的面積為4的面積為1,則矩形ABCD的面積等于_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)服裝部為了調(diào)動(dòng)營業(yè)員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)營業(yè)員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì).為了確定一個(gè)適當(dāng)?shù)脑落N售目標(biāo),商場(chǎng)服裝部統(tǒng)計(jì)了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:

17

18

16

13

24

15

28

26

18

19

22

17

16

19

32

30

16

14

15

26

15

32

23

17

15

15

28

28

16

19

對(duì)這30個(gè)數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下:

頻數(shù)分布表

數(shù)據(jù)分析表

平均數(shù)

眾數(shù)

中位數(shù)

20.3

c

18

請(qǐng)根據(jù)以上信息解答下列問題:

(1)填空:a____b_____,c_____;

(2)若將月銷售額不低于25萬元確定為銷售目標(biāo),則有______位營業(yè)員獲得獎(jiǎng)勵(lì);

(3)若想讓一半左右的營業(yè)員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)垃圾進(jìn)行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類的落實(shí)情況,某居委會(huì)成立了甲、乙兩個(gè)檢查組,采取隨機(jī)抽查的方式分別對(duì)轄區(qū)內(nèi)的A,BC,D四個(gè)小區(qū)進(jìn)行檢查,并且每個(gè)小區(qū)不重復(fù)檢查.

1)甲組抽到A小區(qū)的概率是多少;

2)請(qǐng)用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時(shí)乙組抽到C小區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中選出一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.

類別

類型

新聞

體育

動(dòng)畫

娛樂

戲曲

人數(shù)

11

20

40

4

請(qǐng)你根據(jù)以上信息,回答下列問題:

(1)統(tǒng)計(jì)表中的值為_______,統(tǒng)計(jì)圖中的值為______類對(duì)應(yīng)扇形的圓心角為_____度;

(2)該校共有1500名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校最喜愛體育節(jié)目的學(xué)生人數(shù);

(3)樣本數(shù)據(jù)中最喜愛戲曲節(jié)目的有4人,其中僅有1名男生.從這4人中任選2名同學(xué)去觀賞戲曲表演,請(qǐng)用樹狀圖或列表求所選2名同學(xué)中有男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案