【題目】已知關(guān)于x的一元二次方程tx26x+m+4=0有兩個(gè)實(shí)數(shù)根x1、x2.
(1)當(dāng)m=1時(shí),求t的取值范圍;
(2)當(dāng)t=1時(shí),若x1、x2滿足3| x1|=x2+4,求m的值.
【答案】 (1)t≤且t≠0;(2)m的值為59或.
【解析】
(1)先將方程整理為一般形式得到,則有t≠0,根據(jù)判別式的意義可得,解得,故t的取值范圍為.
(2)當(dāng)t=1時(shí),原式為,根據(jù)判別式的意義可以求出m的取值范圍,再根據(jù)方程可以得出;再聯(lián)系便可求出m的取值范圍.
(1)當(dāng)m=1時(shí),方程變形為tx2-6x+5=0,
根據(jù)題意得t≠0且(6)24t5≥0,
∴t≤且t≠0;
(2)當(dāng)t=1時(shí),方程變形為x2-6x+m+4=0,
△=(6)24(m+4)≥0,解得m≤5,
則x1+ x2=6,x1x2=m+4,
當(dāng)x1<0時(shí),3 x1= x2+4,解得x1=5,x2=11,m+4=55,解得m=59,
當(dāng)x1>0時(shí),3 x1= x2+4,解得x1=,x2=,m+4=,解得m=,
∴m的值為59或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時(shí)B到墻底端C的距離為0.7米.如果梯子的頂端沿墻面下滑0.4米,那么點(diǎn)B將向左滑動(dòng)多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x+3交于A,B兩點(diǎn),交x軸于C、D兩點(diǎn),連接AC、BC,已知A(0,3),C(﹣3,0).
(1)求拋物線的解析式;
(2)在拋物線對(duì)稱軸l上找一點(diǎn)M,使|MB﹣MD|的值最大,并求出這個(gè)最大值;
(3)點(diǎn)P為y軸右側(cè)拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)P作PQ⊥PA交y軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線()的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:①;②方程的兩個(gè)根是,;③;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)時(shí),隨增大而增大.其中結(jié)論正確的個(gè)數(shù)是( 。
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,∠ABC的平分線分別交AC、AD于E、F兩點(diǎn),EG⊥BC于點(diǎn)G,連接AG、FG.下列結(jié)論:①AE=CE;②△ABF≌△GBF;③BE⊥AG;④△AEF為等腰三角形.其中正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線與x軸交于A(1,0)、B(t,0)(t >0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),若拋物線的對(duì)稱軸為直線x=1,
(1)求拋物線的函數(shù)解析式;
(2 若點(diǎn)D是拋物線BC段上的動(dòng)點(diǎn),且點(diǎn)D到直線BC的距離為,求點(diǎn)D的坐標(biāo)
(3)如圖(2),若直線y=mx+n經(jīng)過點(diǎn)A,交y軸于點(diǎn)E(0,1),點(diǎn)P是直線AE下方拋物線上一點(diǎn),過點(diǎn)P作x軸的垂線交直線AE于點(diǎn)M,點(diǎn)N在線段AM延長線上,且PM=PN,是否存在點(diǎn)P,使△PMN的周長有最大值?若存在,求出點(diǎn)P的坐標(biāo)及△PMN的周長的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)長為米的籬笆,一面利用墻(墻的最大長度為米)圍成的中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬為米,面積為平方米.
求與的函數(shù)關(guān)系式;
如果要圍成花圃的面積為平方米,求的長為多少米?
如果要使圍成花圃面積最大,求的長為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)取何值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
(1);
(2);
(3);
(4);
(5);
(6).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度,若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)m和市場價(jià)n分別是多少元?
(2)小明家5月份交水費(fèi)70元,則5月份他家用了多少噸水?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com