【題目】如圖,已知正方形ABCD邊長為1,∠EAF=45°,AE=AF,則有下列結(jié)論:
①∠1=∠2=22.5°;
②點(diǎn)C到EF的距離是 -1;
③△ECF的周長為2;
④BE+DF>EF.
其中正確的結(jié)論是 . (寫出所有正確結(jié)論的序號)
【答案】①②③
【解析】解:∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=∠B=∠D=90°,
在Rt△ABE和Rt△ADF中
,
∴Rt△ABE≌Rt△ADF,
∴∠1=∠2,
∵∠EAF=45°,
∴∠1=∠2=∠22.5°,所以①正確;
連結(jié)EF、AC,它們相交于點(diǎn)H,如圖,
∵Rt△ABE≌Rt△ADF,
∴BE=DF,
而BC=DC,
∴CE=CF,
而AE=AF,
∴AC垂直平分EF,AH平分∠EAF,
∴EB=EH,F(xiàn)D=FH,
∴BE+DF=EH+HF=EF,所以④錯(cuò)誤;
∴△ECF的周長=CE+CF+EF=CED+BE+CF+DF=CB+CD=1+1=2,所以③正確;
設(shè)BE=x,則EF=2x,CE=1﹣x,
∵△CEF為等腰直角三角形,
∴EF= CE,即2x= (1﹣x),解得x= ﹣1,
∴EF=2( ﹣1),
∴CH= EF= ﹣1,所以②正確.
故答案為①②③.
先證明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可對①進(jìn)行判斷;連結(jié)EF、AC,它們相交于點(diǎn)H,如圖,利用Rt△ABE≌Rt△ADF得到BE=DF,則CE=CF,接著判斷AC垂直平分EF,AH平分∠EAF,于是利用角平分線的性質(zhì)定理得到EB=EH,F(xiàn)D=FH,則可對③④進(jìn)行判斷;設(shè)BE=x,則EF=2x,CE=1﹣x,利用等腰直角三角形的性質(zhì)得到2x= (1﹣x),解得x= ﹣1,則可對④進(jìn)行判斷.本題考查了四邊形的綜合題:熟練掌握正方形的性質(zhì)和角平分線的性質(zhì)定理.解決本題的關(guān)鍵是證明AC垂直平分EF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象與y軸交于點(diǎn)C(0,﹣6),與x軸的一個(gè)交點(diǎn)坐標(biāo)是A(﹣2,0).
(1)求二次函數(shù)的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)將二次函數(shù)的圖象沿x軸向左平移 個(gè)單位長度,當(dāng) y<0時(shí),求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.
(1)問線段EC與BF數(shù)量關(guān)系和位置關(guān)系?并給予證明.
(2)連AM,請問∠AME的大小是多少,如能求寫出過程;不能求,寫出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)校圖書館上個(gè)月借閱情況,管理老師從學(xué)生對藝術(shù)、經(jīng)濟(jì)、科普及生活四類圖書借閱情況進(jìn)行了統(tǒng)計(jì),并繪制了下列不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息解答下列問題:
(1)上個(gè)月借閱圖書的學(xué)生有多少人?扇形統(tǒng)計(jì)圖中“藝術(shù)”部分的圓心角度數(shù)是多少?
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)從借閱情況分析,如果要添置這四類圖書300冊,請你估算“科普”類圖書應(yīng)添置多少冊合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三張背面完全相同的數(shù)字牌,它們的正面分別印有數(shù)字“1”、“2”、“3”,將它們背面朝上,洗勻后隨機(jī)抽取一張,記錄牌上的數(shù)字并把牌放回,再重復(fù)這樣的步驟兩次,得到三個(gè)數(shù)字a、b、c,則以a、b、c為邊長正好構(gòu)成等邊三角形的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,E為CD的中點(diǎn),H為BE上的一點(diǎn), ,連接CH并延長交AB于點(diǎn)G,連接GE并延長交AD的延長線于點(diǎn)F.
(1)求證: ;
(2)若∠CGF=90°,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=120°,AB的垂直平分線交BC于M,交AB于E,AC的垂直平分線交BC于N,交AC于F,若MN=2,則AB長( )
A. B. 3 C. 2 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com