【題目】【現(xiàn)場學(xué)習(xí)】
定義:我們把絕對值符號內(nèi)含有未知數(shù)的方程叫做“含有絕對值的方程”.
如:|x|=2,|2x﹣1|=3,| |﹣x=1,…都是含有絕對值的方程.
怎樣求含有絕對值的方程的解呢?基本思路是:含有絕對值的方程→不含有絕對值的方程.
我們知道,根據(jù)絕對值的意義,由|x|=2,可得x=2或x=﹣2.
(1)[例]解方程:|2x﹣1|=3.
我們只要把2x﹣1看成一個整體就可以根據(jù)絕對值的意義進一步解決問題.
解:根據(jù)絕對值的意義,得2x﹣1=3或2x﹣1=
解這兩個一元一次方程,得x=2或x=﹣1.
檢驗:
①當(dāng)x=2時,
原方程的左邊=|2x﹣1|=|2×2﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=2是原方程的解.
②當(dāng)x=﹣1時,
原方程的左邊=|2x﹣1|=|2×(﹣1)﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=﹣1是原方程的解.
綜合①②可知,原方程的解是:x=2,x=﹣1.
【解決問題】
解方程:| |﹣x=1.
(2)【解決問題】解方程:| |﹣x=1.

【答案】
(1)-3
(2)【解答】解:原方程變形為:| x 1 2 |=x+1,

根據(jù)絕對值的意義,得 =1+x或 =﹣(1+x),

解得:x=﹣3或 x=﹣ ,

經(jīng)檢驗:x=﹣3不是原方程的解,x=﹣ 是原方程的解,

所以,原方程的解是:x=﹣


【解析】根據(jù)解方程的步驟去分母、去括號、移項、合并同類項、系數(shù)化為一;由絕對值的意義,得到兩個方程,分別求出x的值,經(jīng)檢驗得到原方程的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( 。

A. 兩條對角線相等的四邊形是平行四邊形

B. 兩條對角線相等且互相垂直的四邊形是矩形

C. 兩條對角線互相垂直平分的四邊形是菱形

D. 兩條對角線互相垂直平分且相等的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5;B46.553.5;C53.560.5;D60.567.5;E67.574.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;

3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=2是一元二次方程x2+mx+4=0的一個解,則m的值是(   )

A.4B.4C.0D.04

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(x+1)(x﹣2)=x2+mx+n,則m+n=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=2x+2沿y軸向下平移6個單位后與x軸的交點坐標是( )

A. -40B. -1,0C. 0,2D. 2,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件(1)打開電視機,正在播放新聞; (2)父親的年齡比他兒子年齡大;(3)下個星期天會下雨;(4)拋擲兩枚質(zhì)地均勻的骰子,向上一面的點數(shù)之和是1;(5)一個實數(shù)的平方是正數(shù)(6)若a、b異號,則a+b<0.屬于確定事件的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是(
A.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C.暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D.擲一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個暗箱里放有a個除顏色外都完全相同的紅、白、藍三種球,其中紅球有4個,白球有10個,每次將球攪拌均勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復(fù)摸球?qū)嶒灪蟀l(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在20%.
(1)試求出a的值;
(2)從中任意摸出一個球,下列事件:①該球是紅球;②該球是白球;③該球是藍球.試估計這三個事件發(fā)生的可能性的大小,并將三個事件按發(fā)生的可能性從小到大的順序排列(用序號表示事件).

查看答案和解析>>

同步練習(xí)冊答案