【題目】如圖,在△ABC中,∠C=90°,BC=5米,AC=12米.M點在線段CA上,從C向A運動,速度為1米/秒;同時N點在線段AB上,從A向B運動,速度為2米/秒.運動時間為t秒.
(1)當(dāng)t為何值時,∠AMN=∠ANM?
(2)當(dāng)t為何值時,△AMN的面積最大?并求出這個最大值.
【答案】(1)當(dāng)t為4時,∠AMN=∠ANM.(2)當(dāng)t=6時,S最大值=平方米.
【解析】
試題分析:(1)用t表示出AM和AN的值,根據(jù)AM=AN,得到關(guān)于t的方程求得t值即可;
(2)作NH⊥AC于H,證得△ANH∽△ABC,從而得到比例式,然后用t表示出NH,從而計算其面積得到有關(guān)t的二次函數(shù)求最值即可.
解:(1)∵從C向A運動,速度為1米/秒;同時N點在線段AB上,從A向B運動,速度為2米/秒.運動時間為t秒.
∴AM=12﹣t,AN=2t
∵∠AMN=∠ANM
∴AM=AN,從而12﹣t=2t
解得:t=4 秒,
∴當(dāng)t為4時,∠AMN=∠ANM.
(2)在Rt△ABC中
∵AB2=BC2+AC2
∴AB=13米
如圖,作NH⊥AC于H,
∴∠NHA=∠C=90°,
∵∠A是公共角,
∴△NHA∽△BCA
∴=,
即:=,
∴NH=
從而有S△AMN=(12﹣t)=﹣t2+,
∴當(dāng)t=6時,S最大值=平方米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AD=6cm,CD=8cm,BC=BD=10cm,點P由B出發(fā)沿BD方向勻速運動,速度為
1cm/s;同時,線段EF由DC出發(fā)沿DA方向勻速運動,速度為1cm/s,交BD于Q,連接PE.若設(shè)運動時間為t(s)(0<t<5).解答下列問題:
(1)當(dāng)t為何值時,PE∥AB?
(2)是否存在某一時刻t,使S△DEQ=?若存在,求出此時t的值;若不存在,說明理由.
(3)如圖2連接PF,在上述運動過程中,五邊形PFCDE的面積是否發(fā)生變化?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,E為CD的中點,作BE的中垂線GH,垂足為M,則GM:MH的值為( )
A.4:1 B.3:1 C.3:2 D.5:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD與正方形OEFG中,點D和點F的坐標(biāo)分別為(﹣3,2)和(1,﹣1),則這兩個正方形的位似中心的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某車間有32名工人,每人每天可加工甲種零件10個或乙種零件8個。在這32名工人中,一部分工人加工甲種零件,其余的加工乙種零件,已知每加工一個甲種零件可獲利35元,每加工一個乙種零件可獲利50元。若此車間這一天一共獲利12200元,求這一天加工乙種零件工人的人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計算正確的是( )
A. a2+a2=a4 B. (3x)2=6x2 C. (x2)3=x6 D. (x+y)2=x2+y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=,則△CEF的周長為( )
A.8 B.9.5 C.10 D.11.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com