如圖1,P為Rt△ABC所在平面內(nèi)任意一點(不在直線AC上),∠ACB = 90°,M為AB邊中點.

操作:以PAPC為鄰邊作平行四邊形PADC,連續(xù)PM并延長到點E,使ME = PM,連結DE

探究:⑴請猜想與線段DE有關的三個結論;

⑵請你利用圖2,圖3選擇不同位置的點P按上述方法操作;

⑶經(jīng)歷⑵之后,如果你認為你寫的結論是正確的,請加以證明;

如果你認為你寫的結論是錯誤的,請用圖2或圖3加以說明;

⑷若將“Rt△ABC”改為“任意△ABC”,其他條件不變,利用圖4操作,并寫出與線

DE有關的結論(直接寫答案).

    圖2                         圖3                  圖4

解:(1)DE//BC,DE=BC,DEAC

   (2)如圖

       

    (3)方法一:

        如圖,連結BE,PM=ME,AM=MB,PMA=EMB,

        PMA≌EMB

        PA=BE,MPA=MEB,PA//BE

       

           

         四邊形DEBC是平行四邊形

         DE//BC,DE=BC

          ACB=90BCAC,DEAC

        方法二:

        如圖,連結BE、PB、AE,

          

         

        PA//BE,PA=BE

        余下部分同方法一

        方法三:

        如圖,連結PD,交AC于N,連結MN,

       

         

         

        又

        DE//BC,DE=BC

         ACB=90BCAC,DEAC

     (4)如圖,DE//BC,DE=BC

      

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,P為Rt△ABC所在平面內(nèi)任意一點(不在直線AC上),∠ACB=90°,M為AB邊中點.操作:以PA、PC為鄰邊作平行四邊形PADC,連續(xù)PM并延長到點E,使ME=PM,連接DE.
探究:
(1)請猜想與線段DE有關的三個結論;
(2)請你利用圖2,圖3選擇不同位置的點P按上述方法操作;
(3)經(jīng)歷(2)之后,如果你認為你寫的結論是正確的,請加以證明;
如果你認為你寫的結論是錯誤的,請用圖2或圖3加以說明;
(注意:錯誤的結論,只要你用反例給予說明也得分)
(4)若將“Rt△ABC”改為“任意△ABC”,其他條件不變,利用圖4操作,并寫出與線段DE有關的結論(直接寫答案).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖1,P為Rt△ABC所在平面內(nèi)任意一點(不在直線AC上),∠ACB=90°,M為AB邊中點.
操作:以PA、PC為鄰邊作平行四邊形PADC,連接PM并延長到點E,使ME=PM,連接DE.
(1)請你利用圖2,選擇Rt△ABC內(nèi)的任意一點P按上述方法操作;
(2)經(jīng)歷(1)之后,觀察兩圖形,猜想線段DE和線段BC之間有怎樣的數(shù)量和位置關系?請選擇其中的一個圖形證明你的猜想;
(3)觀察兩圖,你還可得出和DE相關的什么結論?請直接寫出.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•門頭溝區(qū)二模)如圖1,P為Rt△ABC所在平面內(nèi)任一點(不在直線AC上),∠ACB=90°,M為AB的中點.
操作:以PA、PC為鄰邊作平行四邊形PADC,連接PM并延長到點E,使ME=PM,連接DE.
(1)請你猜想與線段DE有關的三個結論,并證明你的猜想;
(2)若將“Rt△ABC”改為“任意△ABC”,其他條件不變,利用圖2操作,并寫出與線段DE有關的結論(直接寫答案).

查看答案和解析>>

科目:初中數(shù)學 來源:門頭溝區(qū)二模 題型:解答題

如圖1,P為Rt△ABC所在平面內(nèi)任一點(不在直線AC上),∠ACB=90°,M為AB的中點.
操作:以PA、PC為鄰邊作平行四邊形PADC,連接PM并延長到點E,使ME=PM,連接DE.
(1)請你猜想與線段DE有關的三個結論,并證明你的猜想;
(2)若將“Rt△ABC”改為“任意△ABC”,其他條件不變,利用圖2操作,并寫出與線段DE有關的結論(直接寫答案).

精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案