【題目】如圖,在△ABC中,D、E分別是AC、AB的中點(diǎn),CFABED的延長(zhǎng)線(xiàn)于點(diǎn)F,連接AF、CE.

(1)求證:四邊形BCEF是平行四邊形;

(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形AECF是菱形.

【答案】(1)證明見(jiàn)解析(2)當(dāng)∠ABC=90°時(shí),四邊形AECF是菱形,詳見(jiàn)解析

【解析】

1)由三角形中位線(xiàn)定理可得DEBC,BC=2DE,且CFAB,即可證四邊形BCFE是平行四邊形;

2)首先證明四邊形AECF是平行四邊形,且ACEF,可得四邊形AECF是菱形.

1)證明:∵DE分別是AC、AB的中點(diǎn),

DEBC,BC=2DE,

DEBC,CFAB,

∴四邊形BCFE是平行四邊形;

2)當(dāng)∠ABC=90°時(shí),四邊形AECF是菱形,

DEBC,

∴∠ADE=ABC=90°,

ACEF,

∵點(diǎn)EAB中點(diǎn),

AE=BE,

∵四邊形BCFE是平行四邊形,

CFABCF=BE,

CF=AE

∴四邊形CFAE是平行四邊形,且ACEF

∴四邊形AECF是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形中,G、H分別是、的中點(diǎn),E、OF分別是對(duì)角線(xiàn)上的四等分點(diǎn),順次連接G、E、H、F.

1)求證:四邊形是平行四邊形;

2)當(dāng)平行四邊形滿(mǎn)足_______條件時(shí),四邊形是菱形;

3)若,探究四邊形的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】凈覺(jué)寺享有“家東第一寺”的美譽(yù),是一座規(guī)模較大,布局嚴(yán)顏,結(jié)構(gòu)合理,獨(dú)具一格的古建筑群體,被國(guó)務(wù)院批準(zhǔn)列入第六批全國(guó)重點(diǎn)文物保護(hù)單位名單,某校社會(huì)實(shí)踐小組為了測(cè)量寺內(nèi)一古塔的高度,在地面上處垂直于地面豎立了高度為米的標(biāo)桿,這時(shí)地面上的點(diǎn),標(biāo)桿的頂端點(diǎn),古塔的塔尖點(diǎn)正好在同一直線(xiàn)上,測(cè)得米,將標(biāo)桿向后平移到點(diǎn)處,這時(shí)地面上的點(diǎn),標(biāo)桿的頂端點(diǎn),古塔的塔尖點(diǎn)正好在同一直線(xiàn)上(點(diǎn),點(diǎn),點(diǎn),點(diǎn)與古塔底處的點(diǎn)在同一直線(xiàn)上)這時(shí)測(cè)得米,米,請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算古塔的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,在8×6的網(wǎng)格圖中,每個(gè)小正方形邊長(zhǎng)均為1,原點(diǎn)OABC的頂點(diǎn)均為格點(diǎn).點(diǎn)C坐標(biāo)為(24),以O為位似中心,在網(wǎng)格圖中作ABC,使ABCABC位似,且位似比為12;(保留作圖痕跡)

2)則點(diǎn)C的坐標(biāo)為  ,周長(zhǎng)比CABCCABC 

3)如圖②,ABDE是直立在地面上的兩根立柱.AB6m,某一時(shí)刻AB在陽(yáng)光下的投影BC4mDE在陽(yáng)光下的投影長(zhǎng)為6m

①請(qǐng)你在圖②中畫(huà)出此時(shí)DE在陽(yáng)光下的投影EF

②根據(jù)題中信息,求得立柱DE的長(zhǎng)為  m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=(k>0)的圖像與矩形AOBC的邊ACBC分別交于點(diǎn)E、F,點(diǎn)C的坐標(biāo)為(8,6),將△CEF沿EF翻折,C點(diǎn)恰好落在OB上的點(diǎn)D處,則k的值為(

A.B.6C.12D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,AB3,弧AC的度數(shù)是,P為弧BC上一動(dòng)點(diǎn),延長(zhǎng)AP到點(diǎn)Q,使.若點(diǎn)PB運(yùn)動(dòng)到C,則點(diǎn)Q運(yùn)動(dòng)的路徑長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,直線(xiàn)y=-x3x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,點(diǎn)C(m,n)是第二象限內(nèi)一點(diǎn),以點(diǎn)C為圓心的圓與x軸相切于點(diǎn)E,與直線(xiàn)AB相切于點(diǎn)F.

(1)當(dāng)四邊形OBCE是矩形時(shí),求點(diǎn)C的坐標(biāo);

(2)如圖②,若⊙Cy軸相切于點(diǎn)D,求⊙C的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類(lèi),A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

1)本次調(diào)查中C類(lèi)女生有 名,D類(lèi)男生有 名;將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)計(jì)算扇形統(tǒng)計(jì)圖中D所占的圓心角是 ;

3)為了共同進(jìn)步,張老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),以的速度沿射線(xiàn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以2cm/s的速度沿邊BC的延長(zhǎng)線(xiàn)運(yùn)動(dòng),PQ與直線(xiàn)AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t秒,的面積為

(1)直接寫(xiě)出的長(zhǎng):= ;

(2)求出關(guān)于的函數(shù)關(guān)系式,并求出當(dāng)點(diǎn)運(yùn)動(dòng)幾秒時(shí),;

(3)于點(diǎn),當(dāng)點(diǎn)、運(yùn)動(dòng)時(shí),線(xiàn)段的長(zhǎng)度是否改變?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案