【題目】某中學(xué)數(shù)學(xué)興趣小組在一次課外學(xué)習(xí)與探究中遇到一些新的數(shù)學(xué)符號,他們將其中某些材料摘錄如下:
對于三個實數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.請結(jié)合上述材料,解決下列問題:
(1)①M{(﹣2)2,22,﹣22}= ; ②min{sin30°,cos60°,tan45°}= ;
(2)若M{﹣2x,x2,3}=2,求x的值;
(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范圍.
【答案】(1)①;②;(2)x=﹣1或3;(3)﹣2≤x≤4.
【解析】
(1)①根據(jù)平均數(shù)的定義計算即可;
②求出三個數(shù)中的最小的數(shù)即可;
(2)根據(jù)題意,利用平均數(shù)的公式構(gòu)建方程即可解決問題;
(3)根據(jù)題意可得關(guān)于x的不等式組,解不等式即可解決問題.
(1)①M{(﹣2)2,22,﹣22}=,
②min{sin30°,cos60°,tan45°}=,
故答案為:①;②;
(2))∵M(jìn){﹣2x,x2,3}=2,
∴,
解得x=﹣1或3;
(3)∵min{3﹣2x,1+3x,﹣5}=﹣5,
∴,
解得﹣2≤x≤4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,濟(jì)南市為加快網(wǎng)絡(luò)建設(shè),某通信公司在一個坡度為的山腰上建了一座垂直于水平面的信號通信塔,在距山腳處水平距離的點處測得通信塔底處的仰角是,通信塔頂處的仰角是.則通信塔的高度為( )(結(jié)果保留整數(shù),參考數(shù)據(jù):,)
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝年中國航天日,發(fā)揚(yáng)中國航天精神,激發(fā)青少年崇尚科學(xué)探索未知和敢于創(chuàng)新的熱情,某校舉行班級歌詠比賽,歌曲有:《祖國不會忘記》,《飛天》,《仰望星空》(分別用字母,,依次表示這三首歌曲).比賽時,將,,這三個字母分別寫在張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,九(1)班班長先從中隨機(jī)抽取一張卡片放回后洗勻,再由九(2)班班長從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.
(1)九(1)班抽中歌曲《祖國不會忘記》的概率是______;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出九(1)班和九(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于拋物線,下列說法錯誤的是( )
A.若頂點在x軸下方,則一元二次方程有兩個不相等的實數(shù)根
B.若拋物線經(jīng)過原點,則一元二次方程必有一根為0
C.若,則拋物線的對稱軸必在y軸的左側(cè)
D.若,則一元二次方程,必有一根為-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】繪制函數(shù)的圖象,我們經(jīng)歷了如下過程:確定自變量的取值范圍是;列表-描點--連線,得到該函數(shù)的圖象如圖所示
... | ... | |||||||||||||||
... | ... |
觀察函數(shù)圖象,回答下列問題:
(1)函數(shù)圖象在第 象限;
(2)函數(shù)圖象的對稱性是
B.只是軸對稱圖形,不是中心對稱圖形
A.既是軸對稱圖形,又是中心對稱圖形
D.既不是軸對稱圖形,也不是中心對稱圖形
C.不是軸對稱圖形,而是中心對稱圖形
(3)在時,當(dāng) 時,函數(shù)有最 (大,小)值,且這個最值等于
在時,當(dāng) 時,函數(shù)有最 (大,小)值,且這個最值等于
(4)方程是否有實數(shù)解?說明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,弦點是直徑上方半圓上的動點(包括端點和的平分線相交于點E,當(dāng)點從點運(yùn)動到點時,則兩點的運(yùn)動路徑長的比值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的直徑,為上不同于的兩點,連接且過點作垂足為直線與相交于點.
(1)求證:是的切線;
(2)若
①求直徑的長;
②如圖2所示,連接直接寫出的面積與四邊形的面積的比值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,CN為⊙O的切線,OM⊥AB于點O,分別交AC、CN于D、M兩點.
(1)求證:MD=MC;
(2)若⊙O的半徑為5,AC=4,求MC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周長_____________cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com