【題目】下列兩個(gè)三角形不一定相似的是

A.兩條直角邊的比都是的兩個(gè)直角三角形

B.腰與底的比都是的兩個(gè)等腰三角形

C.有一個(gè)內(nèi)角為的兩個(gè)直角三角形

D.有一個(gè)內(nèi)角為的兩個(gè)等腰三角形

【答案】D

【解析】

根據(jù)圖形相似的定義判定,用排除法求解.

解:A. 兩條直角邊的比都是的兩個(gè)直角三角形,根據(jù)兩邊對(duì)應(yīng)成比例且夾角相等,兩個(gè)三角形相似判斷,兩個(gè)三角形相似,故正確,不符合題意;

B. 腰與底的比都是的兩個(gè)等腰三角形,等腰三角形,兩條腰相等,根據(jù)三邊對(duì)應(yīng)成比例,兩個(gè)三角形相似判斷,兩個(gè)三角形相似,故正確,不符合題意;

C. 有一個(gè)內(nèi)角為的兩個(gè)直角三角形,兩角對(duì)應(yīng)相等兩三角形相似判斷,兩個(gè)三角形相似,故正確,不符合題意;

D. 有一個(gè)內(nèi)角為的兩個(gè)等腰三角形,內(nèi)角是的等腰三角形需要注意的是,這個(gè)角是頂角還是底角,情況不一樣不一定相似.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,yax2+bx+c的圖象經(jīng)過點(diǎn)(﹣10),(m,0);有如下判斷:①abc0;②b3c;③1;④|am+a|.其中正確的判斷有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以邊為直徑的經(jīng)過點(diǎn),上一點(diǎn),連結(jié)于點(diǎn),且.

1)試判斷的位置關(guān)系,并說明理由;

2)若點(diǎn)是弧的中點(diǎn),已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,有一塊直角三角板,其中,,A、Bx軸上,點(diǎn)A的坐標(biāo)為,圓M的半徑為,圓心M的坐標(biāo)為,圓M以每秒1個(gè)單位長度的速度沿x軸向右做平移運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒;

求點(diǎn)C的坐標(biāo);

當(dāng)點(diǎn)M的內(nèi)部且與直線BC相切時(shí),求t的值;

如圖2,點(diǎn)E、F分別是BC、AC的中點(diǎn),連接EM、FM,在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使?若存在,直接寫出t的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)yax+1a≠0)與反比例函數(shù)yk≠0)的圖象交于AD兩點(diǎn),ABx軸于點(diǎn)BtanAOB,OB2

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m.水面下降2.5m,水面寬度增加_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx的圖象如圖所示,若關(guān)于x的一元二次方程ax2+bx+k-1=0沒有實(shí)數(shù)根,則k的取值范圍為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,BC=6cmAC=8cm,點(diǎn)P從點(diǎn)A開始沿AC向點(diǎn)C2厘米/秒的速度運(yùn)動(dòng);與此同時(shí),點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B1厘米/秒的速度運(yùn)動(dòng);如果PQ分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

1)經(jīng)過幾秒,△CPQ的面積等于3cm2?

2)在整個(gè)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使PQ恰好平分△ABC的面積?若存在,求出運(yùn)動(dòng)時(shí)間t;若不存在,請(qǐng)說明理由.

3)是否存在某一時(shí)刻,PQ長為,如果存在,求出運(yùn)動(dòng)時(shí)間t。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形和四邊形都是正方形,且.

1)如圖1,連接.求證:;

2)如圖2,將正方形繞著點(diǎn)旋轉(zhuǎn)到某一位置時(shí)恰好使得.的度數(shù);

3)在(2)的條件下,當(dāng)正方形的邊長為時(shí),請(qǐng)直接寫出正方形的邊長.

查看答案和解析>>

同步練習(xí)冊(cè)答案