【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)By軸的正半軸上,點(diǎn)A在反比例函數(shù)yk0x0)的圖象上,點(diǎn)D的坐標(biāo)為(43).若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點(diǎn)D落在函數(shù)yk0,x0)的圖象上時(shí),則菱形ABCD沿x軸正方向平移的距離( 。

A.B.C.D.

【答案】B

【解析】

過(guò)點(diǎn)Dx軸的垂線(xiàn),垂足為F,首先得出A點(diǎn)坐標(biāo),再利用待定系數(shù)法求得反比例函數(shù)解析式為y=;將菱形ABCD沿x軸正方向平移,使得點(diǎn)D落在函數(shù)y=x0)的圖象D′點(diǎn)處,得出點(diǎn)D′的縱坐標(biāo)為3,求出其橫坐標(biāo),進(jìn)而得出菱形ABCD平移的距離.

過(guò)點(diǎn)Dx軸的垂線(xiàn),垂足為F

∵點(diǎn)D的坐標(biāo)為(4,3),

OF4,DF3,

OD5

AD5,

∴點(diǎn)A坐標(biāo)為(4,8),

kxy4×832,

∴反比例函數(shù)為y,

將菱形ABCD沿x軸正方向平移,使得點(diǎn)D落在函數(shù)yx0)的圖象D′點(diǎn)處,

過(guò)點(diǎn)D′x軸的垂線(xiàn),垂足為F′

DF3,

D′F′3,

∴點(diǎn)D′的縱坐標(biāo)為3,

∵點(diǎn)D′yx0)的圖象上

3,

解得:x,

OF′,

FF′4,

∴菱形ABCD平移的距離為

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象經(jīng)過(guò)點(diǎn)A(﹣22),過(guò)點(diǎn)AABy軸,垂足為B,在y軸的正半軸上取一點(diǎn)P0,t),過(guò)點(diǎn)P作直線(xiàn)OA的垂線(xiàn)l,以直線(xiàn)l為對(duì)稱(chēng)軸,點(diǎn)B經(jīng)軸對(duì)稱(chēng)變換得到的點(diǎn)B'在此反比例函數(shù)的圖象上,則t的值是( 。

A. 1+B. 4+C. 4D. -1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AD=4,EAB上且AB=4BE,連接CE,作BFCEF,正方形對(duì)角線(xiàn)交于O點(diǎn),連接OF,將△COF沿CE翻折得△CGF,連接BG,則BG的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線(xiàn);

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線(xiàn)與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線(xiàn);
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線(xiàn);

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線(xiàn)y=ax2+ax+b(a≠0)與直線(xiàn)y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線(xiàn)的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線(xiàn)與拋物線(xiàn)的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線(xiàn)y=﹣2x與拋物線(xiàn)在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線(xiàn)段GH沿y軸向上平移t個(gè)單位(t>0),若線(xiàn)段GH與拋物線(xiàn)有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,平分,,的中點(diǎn),

1)求證:;

2)求證:;

3)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CD與⊙O相切,ADBC,連接OD,AC

1)求證:ABC∽△DCA

2)若AC2,BC4,求DO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知反比例函數(shù)常數(shù),.

1若點(diǎn)在這個(gè)函數(shù)的圖象上,求的值;

2若在這個(gè)函數(shù)圖象的每一個(gè)分支上,的增大而增大,求的取值范圍;

3,試判斷點(diǎn)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣3,0)、(0,4),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)B點(diǎn),且頂點(diǎn)在直線(xiàn)y=上.

(1)求拋物線(xiàn)對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線(xiàn)上,并說(shuō)明理由.

(3)(2)的條件下,若M點(diǎn)是CD所在直線(xiàn)下方該拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)MMN平行于y軸交CD于點(diǎn)N.設(shè)點(diǎn)M的橫坐標(biāo)為t,MN的長(zhǎng)度為s,求st之間的函數(shù)關(guān)系式,寫(xiě)出自變量t的取值范圍,并求s取大值時(shí),點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,經(jīng)過(guò)圓心的線(xiàn)段于點(diǎn),與交于點(diǎn).

(1)如圖1,當(dāng)半徑為,,求弦的長(zhǎng);

(2)如圖2,當(dāng)半徑為 ,,,求弦的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案