在等腰△ABC中,與∠A相鄰的外角是110°,則∠B的度數(shù)是________.

70°或40°或55°
分析:由已知等腰△ABC的一個外角是110°,可以得出可能底角的外角是110°,也可能頂角的外角是110°,進(jìn)而得出∠B的度數(shù).
解答:∵等腰△ABC與∠A相鄰的一個外角是110°,
∴∠A=180°-110°=70°,
①當(dāng)?shù)捉恰螦的外角是110°,
底角∠B=∠A=180°-110°=70°,
②當(dāng)?shù)捉恰螦的外角是110°,
頂角∠B=180°-2×∠A=180°-2×70°=40°,
③當(dāng)頂角∠A的外角是110°,
底角∠B=110°÷2=55°.
故答案為:70°或40°或55°.
點(diǎn)評:此題主要考查了等腰三角形的性質(zhì),此題應(yīng)注意進(jìn)行討論,容易忽略一種情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在等腰△ABC中,與∠A相鄰的外角是110°,則∠B的度數(shù)是
70°或40°或55°
70°或40°或55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC,AD是BC邊上的高,點(diǎn)E、F分別是邊AB、AC上的點(diǎn),且EF∥BC.
(1)試說明△AEF是等腰三角形;
(2)試比較DE與DF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC=13cm,BC=10cm,AD⊥BC,垂足為點(diǎn)D.點(diǎn)P,Q分別從B,C兩點(diǎn)同時出發(fā),其中點(diǎn)P從點(diǎn)B開始沿BC邊向點(diǎn)C運(yùn)動,速度為1cm/s,點(diǎn)Q從點(diǎn)C開始沿CA邊向點(diǎn)A運(yùn)動,速度為2cm/s,設(shè)它們運(yùn)動的時間為x(s).
(1)當(dāng)x為何值時,將△PCQ沿直線PQ翻折180°,使C點(diǎn)落到C'點(diǎn),得到的四邊形CQC'P是菱形?
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<6.5時,求y與x的函數(shù)關(guān)系式.
(3)當(dāng)0<x<5時,是否存在x,使得△PDM與△MDQ(M為PQ與AD的交點(diǎn))的面積比為3:5,若存在,求出x的值;若不存在,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在等腰△ABC中,與∠A相鄰的外角是110°,則∠B的度數(shù)是______.

查看答案和解析>>

同步練習(xí)冊答案