【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.

(1)加工成的正方形零件的邊長(zhǎng)是多少mm?

(2)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少?請(qǐng)你計(jì)算.

(3)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).

【答案】加工成的正方形零件的邊長(zhǎng)是;這個(gè)矩形零件的兩條邊長(zhǎng)分別為;的最大值為,此時(shí)

【解析】

(1)設(shè)正方形的邊長(zhǎng)為xmm,則PN=PQ=ED=x,AE=ADED=80x,通過證明APN∽△ABC,利用相似比可得到,然后根據(jù)比例性質(zhì)求出x即可;

(2)由于矩形是由兩個(gè)并排放置的正方形所組成,則可設(shè)PQ=x,則PN=2x,AE=80x,然后與(1)的方法一樣求解;

(3)設(shè)PN=x,用PQ表示出AE的長(zhǎng)度,然后根據(jù)相似三角形對(duì)應(yīng)高的比等于相似比列出比例式并用x表示出PN,然后根據(jù)矩形的面積公式列式計(jì)算,再根據(jù)二次函數(shù)的最值問題解答.

(1)如圖

設(shè)正方形的邊長(zhǎng)為,則,

,

,

,

,即,

解得

∴加工成的正方形零件的邊長(zhǎng)是

如圖,

設(shè),則,,

,

,即,

解得:

,

∴這個(gè)矩形零件的兩條邊長(zhǎng)分別為,;

如圖

設(shè),矩形的面積為,

由條件可得

,

,

解得:

,

的最大值為,此時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過點(diǎn)EEF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.

(1)如圖1,求證:矩形DEFG是正方形;

(2)若AB=2,CE=,求CG的長(zhǎng)度;

(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫出∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)4<OA<8,以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作O的切線交邊BC于N.

1圖中是否存在與ODM相似的三角形,若存在,請(qǐng)找出并給予證明;

2設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;

3在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)OA逐漸增大的過程中,CMN的周長(zhǎng)如何變化?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于點(diǎn),過點(diǎn)作軸的垂線,垂足為,已知的面積為

求反比例函數(shù)的解析式;

如圖,點(diǎn)為反比例函數(shù)在第三象限圖象上的點(diǎn),過點(diǎn)作軸的垂線,垂足為,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(15,0),點(diǎn)B的坐標(biāo)為(6,12),點(diǎn)C的坐標(biāo)為(0,6), 直線ABy軸于點(diǎn)D, 動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿著y軸正方向以每秒2個(gè)單位的速度運(yùn)動(dòng), 同時(shí),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)沿著射線AB以每秒a個(gè)單位的速度運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間為t秒,

1)求直線AB的解析式和CD的長(zhǎng).

2)當(dāng)△PQD與△BDC全等時(shí),a的值.

3)記點(diǎn)P關(guān)于直線BC的對(duì)稱點(diǎn)為,連結(jié)當(dāng)t=3,時(shí), 求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,過頂點(diǎn)作射線.

1)當(dāng)射線外部時(shí),如圖①,點(diǎn)在射線上,連結(jié)、,已知,.

①試證明是直角三角形;

②求線段的長(zhǎng).(用含的代數(shù)式表示)

2)當(dāng)射線內(nèi)部時(shí),如圖②,過點(diǎn)于點(diǎn),連結(jié),請(qǐng)寫出線段、的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008

【答案】1﹣10m2n3+8m3n2;(22x﹣40;(3)1

【解析】試題分析:1)原式利用單項(xiàng)式乘以多項(xiàng)式法則計(jì)算即可得到結(jié)果;

2)原式兩項(xiàng)利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并即可得到結(jié)果;

3)先根據(jù)冪的乘方的逆運(yùn)算,把()2 016化為()1008,再根據(jù)積的乘方的逆運(yùn)算計(jì)算即可.

試題解析:(1原式=5mn2)(﹣2mn+﹣4m2n)(﹣2mn=﹣10m2n3+8m3n2;

2原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40

3)原式=()1008×161 008=(×16)1 008=1.

型】解答
結(jié)束】
19

【題目】如圖,方格圖中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)AB、C都是格點(diǎn).

1)畫出△ABC關(guān)于直線BM對(duì)稱的△A1B1C1;

2)寫出AA1的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架云梯AB長(zhǎng)25分米,斜靠在一面墻上,梯子底端B離墻7分米.

1)這個(gè)梯子的頂端A距地面有多高?

2)如果梯子頂端下滑了4分米,那么梯子的底端在水平方向滑動(dòng)了多少分米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在中,,(如圖1),有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論.

2)圖2,在四邊形中,相于點(diǎn),,,,求長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案