【題目】已知一副三角板按如圖1方式拼接在一起,其中邊OAOC與直線EF重合,,

1______

如圖2,三角板COD固定不動(dòng),將三角板AOB繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)一個(gè)角度,在轉(zhuǎn)動(dòng)過程中兩塊三角板都在直線EF的上方:

當(dāng)OB平分OA、OCOD其中的兩邊組成的角時(shí),求滿足要求的所有旋轉(zhuǎn)角度的值;

是否存在?若存在,求此時(shí)的的值;若不存在,請(qǐng)說明理由.

【答案】(1)75(2)①,,②當(dāng)時(shí),存在

【解析】

1)根據(jù)平平角的定義即可得到結(jié)論;

2)①根據(jù)已知條件和角平分線的定義即可得到結(jié)論;

②當(dāng)OAOD的左側(cè)時(shí),當(dāng)OAOD的右側(cè)時(shí),列方程即可得到結(jié)論.

解:(1)∵∠AOB45°,∠COD60°,

∴∠BOD180°AOBCOD75°,

故答案為:75;

2)①當(dāng)OB平分∠AOD時(shí),

∵∠AOE=α,∠COD60°,

∴∠AOD180°AOECOD120°α,

∴∠AOBAOD60°α=45°,

∴α=30°,

當(dāng)OB平分∠AOC時(shí),

∵∠AOC180°α,

∴∠AOB90°α=45°,

∴α=90°;

當(dāng)OB平分∠DOC時(shí),

∵∠DOC60°,

∴∠BOC30°,

∴α=180°45°30°=105°,

綜上所述,旋轉(zhuǎn)角度α的值為30°,90°,105°;

②當(dāng)OAOD的左側(cè)時(shí),則∠AOD120°α,∠BOC135°α,

∵∠BOC2AOD,

135°α=2120°α),

∴α=105°;

當(dāng)OAOD的右側(cè)時(shí),則∠AOD=α120°,∠BOC135°α,

∵∠BOC2AOD,

135°α=2(α120),

∴α=125°,

綜上所述,當(dāng)α=105°或125°時(shí),存在∠BOC2AOD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店購(gòu)進(jìn)一批甲、乙兩種款型時(shí)尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價(jià)比乙種款型每件的進(jìn)價(jià)少30元.

1)甲、乙兩種款型的T恤衫各購(gòu)進(jìn)多少件?

2)商店進(jìn)價(jià)提高60%標(biāo)價(jià)銷售,銷售一段時(shí)間后,甲款型全部售完,乙款型剩余一半,商店決定對(duì)乙款型按標(biāo)價(jià)的五折降價(jià)銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是等腰△ABC底邊BC上的高.點(diǎn)O是AC中點(diǎn),延長(zhǎng)DO到E,使OE=OD,連接AE,CE.

(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OD是∠AOB的平分線,OE是∠BOC的平分線.

(1)若∠BOC=50°,BOA=80°,求∠DOE的度數(shù);

(2)若∠AOC=150°,求∠DOE的度數(shù);

(3)你發(fā)現(xiàn)∠DOE與∠AOC有什么等量關(guān)系?給出結(jié)論并說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:[x+y2﹣(xy2]÷(2xy).

2)解方程:

3)因式分解:xy24x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,點(diǎn)D為AC的中點(diǎn),點(diǎn)E,F(xiàn)分別是線段AB,CB上的動(dòng)點(diǎn),且∠EDF=90°,若ED的長(zhǎng)為m,則△BEF的周長(zhǎng)是(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題.

我們知道方程2x+3y=12有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得,(x、y為正整數(shù))∴則有0x6.又為正整數(shù),則為正整數(shù).

23互質(zhì),可知:x3的倍數(shù),從而x=3,代入

2x+3y=12的正整數(shù)解為

問題:

1)請(qǐng)你寫出方程2x+y=5的一組正整數(shù)解:______;

2)若為自然數(shù),則滿足條件的x值有______個(gè);

A2B、3C、4D、5

3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去冬今春,某市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD的一組對(duì)邊AD、BC的延長(zhǎng)線交于點(diǎn)E.
(1)如圖1,若∠ABC=∠ADC=90°,求證:EDEA=ECEB;

(2)如圖2,若∠ABC=120°,cos∠ADC= ,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;

(3)如圖3,另一組對(duì)邊AB、DC的延長(zhǎng)線相交于點(diǎn)F.若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,直接寫出AD的長(zhǎng)(用含n的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案