【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是18,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn).若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)G為線段EF上一動點(diǎn),則△CDG周長的最小值為( )
A.7B.9C.11D.13
【答案】C
【解析】
連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)C關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,故AD的長為CG+GD的最小值,由此即可得出結(jié)論.
解:連接AD,
∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),
∴AD⊥BC,
∴S△ABC= BCAD= ×4×AD=18,解得AD=9,
∵EF是線段AC的垂直平分線,
∴點(diǎn)C關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,
∴AD的長為CG+GD的最小值,
∴△CDG的周長最短=(CG+GD)+CD=AD+BC=9+ ×4=9+2=11.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點(diǎn),M是BC邊上的動點(diǎn)(點(diǎn)M不與B、C重合),過點(diǎn)C作CN垂直DM交AB于點(diǎn)N,連結(jié)OM、ON、MN.下列五個結(jié)論:①△CNB≌△DMC;②;③ON⊥OM;④若AB=2,則的最小值是1;⑤.其中正確結(jié)論是_________.(只填番號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用5500元購進(jìn)甲、乙兩種礦泉水共180箱,礦泉水的成本價與銷售價如下表所示:
類別 | 成本價(元箱) | 銷售價(元箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場售完這180箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】浦東新區(qū)在創(chuàng)建文明城區(qū)的活動中,有兩段長度相等的彩色道磚路面的鋪設(shè)任務(wù),分別交給甲、乙兩個施工隊同時進(jìn)行施工.如圖是反映所鋪設(shè)的彩色道磚路面的長度(米)與施工時間(時)之間關(guān)系的部分圖像.請根據(jù)題意回答下列問題:
(1)甲隊每小時施工_________米;
(2)乙隊在時段內(nèi),與之間的函數(shù)關(guān)系式是_________;
(3)在時段內(nèi),甲隊比乙隊每小時快_________米;
(4)如果甲隊施工速度不變,乙隊在小時后,施工速度增加到米/時,結(jié)果兩隊同時完成了任務(wù).則甲隊從開始施工到完工所鋪設(shè)的彩色道磚路面的長度為_________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)在上,點(diǎn)在上,點(diǎn)、在對角線上,若四邊形是菱形,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O點(diǎn),則下列結(jié)論:①CF=BE;②∠AMO=∠ANO;③OA平分∠FOE;④∠COB=120°,其中正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個頂點(diǎn)的坐標(biāo)分別為
(1)請畫出向下平移4個單位長度后得;
(2)請畫出關(guān)于軸對稱的;
(3)若坐標(biāo)軸上存在點(diǎn),使得是以為底邊的等腰三角形,請直接寫出滿足條件的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直角坐標(biāo)系中,點(diǎn)分別在軸上,點(diǎn)的坐標(biāo)為.以為邊在第一象限作等邊垂直平分.
(1)求的長.
(2)求證:.
(3)如圖2,連接交于點(diǎn).點(diǎn)是否為MC的中點(diǎn)?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com