【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60后,再進(jìn)行操作.設(shè)該材料溫度為y(),從加熱開(kāi)始計(jì)算的時(shí)間為x(分鐘).據(jù)了解,設(shè)該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知該材料在操作加工前的溫度為15,加熱5分鐘后溫度達(dá)到60

(1)、求出將材料加熱時(shí),y與x的函數(shù)關(guān)系式;

(2)、求出停止加熱進(jìn)行操作時(shí),y與x的函數(shù)關(guān)系式;

(3)、根據(jù)工藝要求,當(dāng)材料的溫度低于15時(shí),須停止操作,那么操作時(shí)間是多少?

【答案】(1)、y=9x+15;(2)、y=;(3)、15分鐘

【解析】

試題分析:(1)、設(shè)一次函數(shù)解析式為y=kx+b,將(0,15)和(5,60)代入一次函數(shù)解析式求出k和b的值;(2)、設(shè)反比例函數(shù)的解析式為y=,將(5,60)代入求出函數(shù)解析式;(3)、將y=15代入反比例函數(shù)解析式求出x的值,然后再減去5分鐘就是操作的時(shí)間.

試題解析:(1)、設(shè)函數(shù)解析式為y=kx+b 將(0,15)和(5,60)代入函數(shù)解析式可得:

解得: 一次函數(shù)的解析式為:y=9x+15

、設(shè)反比例函數(shù)的解析式為:y= 將(5,60)代入得:k=300 則反比例函數(shù)解析式為:y=.

、將y=15代入反比例函數(shù)解析式可得:x=20 20-5=15(分鐘)

即操作時(shí)間為15分鐘.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè)(記為A1,A2,A3),黑球2個(gè)(記為B1,B2).

(1)若先從袋中取出m(m>0)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:①若A為必然事件,則m的值為 ②若A為隨機(jī)事件,則m的取值為

(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用樹(shù)狀圖或列表法求這個(gè)事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(BF,C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出AE之間的距離.

(參考數(shù)據(jù):sin22°,cos22°,tan22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】滿足-2x>-12的非負(fù)整數(shù)有________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校早上8時(shí)上第一節(jié)課,45分鐘后下課,這節(jié)課中分針轉(zhuǎn)動(dòng)的角度為( )
A.45°
B.90°
C.180°
D.270°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(﹣12的結(jié)果是( 。

A. 2B. 2C. 1D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(x+3)(2x-1)是多項(xiàng)式__________因式分解的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】單項(xiàng)式﹣3πa3的系數(shù)是 , 次數(shù)是

查看答案和解析>>

同步練習(xí)冊(cè)答案