【題目】已知:如圖,在矩形ABCD中,Ab=6cm,BC=8cm,對(duì)角線AC,BD交于點(diǎn)0.點(diǎn)P從點(diǎn)A出發(fā),沿方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動(dòng),速度為1cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接PO并延長(zhǎng),交BC于點(diǎn)E,過(guò)點(diǎn)Q作QF∥AC,交BD于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),△AOP是等腰三角形?
(2)設(shè)五邊形OECQF的面積為S(cm2),試確定S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使S五邊形S五邊形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使OD平分∠COP?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)t為或5;(2);(3)t=;(4)t=2.88.
【解析】
試題分析:(1)根據(jù)矩形的性質(zhì)和勾股定理得到AC=10,①當(dāng)AP=PO=t,如圖1,過(guò)P作PM⊥AO,根據(jù)相似三角形的性質(zhì)得到AP=t=,②當(dāng)AP=AO=t=5,于是得到結(jié)論;
(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根據(jù)全等三角形的性質(zhì)得到CE=AP=t,根據(jù)相似三角形的性質(zhì)表示出EH,根據(jù)相似三角形的性質(zhì)表示出QM,F(xiàn)Q,根據(jù)圖形的面積即可得到結(jié)論;
(3)根據(jù)題意列方程得到t的值,于是得到結(jié)論;
(4)由角平分線的性質(zhì)得到DM的長(zhǎng),根據(jù)勾股定理得到ON的長(zhǎng),由三角形的面積公式表示出OP,根據(jù)勾股定理列方程即可得到結(jié)論.
試題解析:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①當(dāng)AP=PO=t,如圖1,過(guò)P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t=,②當(dāng)AP=AO=t=5,∴當(dāng)t為或5時(shí),△AOP是等腰三角形;
(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO與△CEO中,∵∠PAO=∠ECO,AO=OC,∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH=,∵DN==,∵QM∥DN,∴△CQM∽△CDN,∴,即,∴QM=,∴DG==,∵FQ∥AC,∴△DFQ∽△DOC,∴,∴FQ=,∴S五邊形OECQF=S△OEC+S四邊形OCQF==,∴S與t的函數(shù)關(guān)系式為;
(3)存在,∵S△ACD=×6×8=24,∴S五邊形OECQF:S△ACD=():24=9:16,解得t=,t=0,(不合題意,舍去),∴t=時(shí),S五邊形S五邊形OECQF:S△ACD=9:16;
(4)如圖3,過(guò)D作DM⊥AC于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN=,∴ON=OM==,∵OPDM=3PD,∴OP=,∴PM=,∵,∴,解得:t≈15(不合題意,舍去),t≈2.88,∴當(dāng)t=2.88時(shí),OD平分∠COP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于體育選考項(xiàng)目統(tǒng)計(jì)圖
項(xiàng)目 | 頻數(shù) | 頻率 |
A | 80 | b |
B | c | 0.3 |
C | 20 | 0.1 |
D | 40 | 0.2 |
合計(jì) | a | 1 |
(1)求出表中a,b,c的值,并將條形統(tǒng)計(jì)圖補(bǔ)充完整. 表中a= , b= , c= .
(2)如果有3萬(wàn)人參加體育選考,會(huì)有多少人選擇籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解題:
你知道為什么任何無(wú)限循環(huán)小數(shù)都可以寫成分?jǐn)?shù)形式嗎?下面的解答過(guò)程會(huì)告訴你原因和方法.
(1)閱讀下列材料:
問(wèn)題:利用一元一次方程將 化成分?jǐn)?shù).
設(shè) .
由 ,可知 ,
即 .(請(qǐng)你體會(huì)將方程兩邊都乘以10起到的作用)
可解得 ,即 .
填空:將 直接寫成分?jǐn)?shù)形式為 .
(2)請(qǐng)仿照上述方法把小數(shù) 化成分?jǐn)?shù),要求寫出利用一元一次方程進(jìn)行解答的過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);
(2)在圖①中,若∠AOC= ,直接寫出∠DOE的度數(shù)(用含 的代數(shù)式表示);
(3)將圖①中的∠DOC繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△A′B′C′關(guān)于直線m對(duì)稱。
(1)結(jié)合圖形指出對(duì)稱點(diǎn).
(2)連接A、A′,直線m與線段AA′有什么關(guān)系?
(3)延長(zhǎng)線段AC與A′C′,它們的交點(diǎn)與直線m有怎樣的關(guān)系?其它對(duì)應(yīng)線段(或其延長(zhǎng)線)的交點(diǎn)呢?你發(fā)現(xiàn)了什么規(guī)律,請(qǐng)敘述出來(lái)與同伴交流。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A. 2a×3a=6a B. (-2a)3=-6a3
C. 6a÷(2a)=3a D. (-a3)2=a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將投影片的圖案投影到屏幕上,這種圖形的變換是( )
A.平移變換B.旋轉(zhuǎn)變換C.軸對(duì)稱變換D.相似變換
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com