【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點C、D,與邊BC相交于點F,OA與CD相交于點E,連接FE并延長交AC邊于點G.
(1)求證:DF∥AO;
(2)若AC=6,AB=10,求CG的長.

【答案】
(1)證明:連接OD.

∵AB與⊙O相切與點D,又AC與⊙O相切與點,

∴AC=AD,∵OC=OD,

∴OA⊥CD,

∴CD⊥OA,

∵CF是直徑,

∴∠CDF=90°,

∴DF⊥CD,

∴DF∥AO.


(2)過點作EM⊥OC于M,

∵AC=6,AB=10,

∴BC= =8,

∴AD=AC=6,

∴BD=AB﹣AD=4,

∵BD2=BFBC,

∴BF=2,

∴CF=BC﹣BF=6.OC= CF=3,

∴OA= =3 ,

∵OC2=OEOA,

∴OE= ,

∵EM∥AC,

= = = ,

∴OM= ,EM= ,F(xiàn)M=OF+OM=

= = = ,

∴CG= EM=2.


【解析】(1)欲證明DF∥OA,只要證明OA⊥CD,DF⊥CD即可;(2)過點作EM⊥OC于M,易知 = ,只要求出EM、FM、FC即可解決問題;
【考點精析】掌握切線的性質(zhì)定理是解答本題的根本,需要知道切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為(40),C點的坐標為(0,6),點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O-C-B-A-O的路線循環(huán)移動.

1)寫出點B的坐標;

2)當點P移動了4秒時,求出此時點P的坐標;

3)在移動第一周的過程中,當OBP的面積是8時,求出此時點P的坐標;

4)若在點P出發(fā)的同時,另外有一點Q也從原點出發(fā),以每秒1個單位長度的速度沿著O-A-B-C-O的路線循環(huán)運動,請直接寫出點P和點Q在第2020次相遇時的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC的頂點均在邊長為1的小正方形網(wǎng)絡中的格點上,如圖,建立平面直角坐標系,點Bx軸上.

(1)在圖中畫出△ABC關于x軸對稱的△A’B’C’,連接AA’,求證:△AA’C≌△A’AC’;

2)請在y軸上畫點P,使得PB+PC最短.(保留作圖痕跡,不寫畫法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形的兩條對角線的夾角為60度,對角線長為15,則矩形的較短邊長為(

A. 12B. 10C. 7.5D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,ABE與∠CDE的角平分線相交于點F,若∠F=125°,則∠E的度數(shù)為( )

A. 110° B. 120° C. 115° D. 105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點C,E是AB上一點,延長CE交⊙O于點D.
(1)如圖①,求∠T和∠CDB的大。
(2)如圖②,當BE=BC時,求∠CDO的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值嗎?

遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先計算下列各式的值:

(1)(x﹣1)(x+1)= ;

(2)(x﹣1)(x2+x+1)= ;

(3)(x﹣1)(x3+x2+x+1)= ;

由此我們可以得到(x﹣1)(x99+x98+…+x+1)= ;

請你利用上面的結論,完成下面兩題的計算:

(1)299+298+…+2+1;

(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學新建了一棟7層的教學大樓,每層樓有8間教室,進出這棟大樓共有八道門,其中四道正門大小相同,四道側門大小也相同.安全檢查中,對八道門進行了測試:當同時開啟一道正門和兩道側門時,2分內(nèi)可以通過560名學生;當同時開啟一道正門和一道側門時,4分內(nèi)可以通過800名學生.

1)平均每分內(nèi)一道正門和一道側門分別可以通過多少名學生?

2)檢查中發(fā)現(xiàn),緊急情況時因學生擁擠,出門的效率將降低30%.安全檢查規(guī)定:在緊急情況下全大樓的學生應在5分內(nèi)通過這八道門安全撤離,假設這棟教學大樓每間教室最多有45名學生,問建造的這八道門是否符合安全規(guī)定?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小有什么數(shù)量關系?請說明理由。(要求:畫出圖形,并寫出已知,求證,證明過程)。

查看答案和解析>>

同步練習冊答案