如圖,已知⊙O與CA、CB相切于點(diǎn)A、B,OA=OB=2
3
cm,AB=6cm,求∠ACB的度數(shù).
過(guò)O作OD⊥AB于D;
△OAB中,OA=OB,OD⊥AB;
∴AD=BD,∠AOD=∠BOD=
1
2
∠AOB(等腰三角形三線合一);
Rt△BOD中,OB=2
3
,BD=3;
∴sin∠BOD=
BD
OB
=
3
2
,即∠BOD=60°;
∴∠AOB=120°;
∵CB、CA都是⊙O的切線,
∴∠OAC=∠OBC=90°;
∴∠AOB+∠ACB=180°,
∴∠ACB=180°-∠AOB=60°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的圓與AC,AB分別交于點(diǎn)D,E,且∠CBD=∠A.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AD:AO=8:5,BC=2,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC⊥AB于點(diǎn)B,連接OC交⊙O于點(diǎn)E,弦ADOC,弦DF⊥AB于點(diǎn)G.
(1)求證:點(diǎn)E是
BD
的中點(diǎn);
(2)求證:CD是⊙O的切線;
(3)若sin∠BAD=
4
5
,⊙O的半徑為5,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB、CD是⊙O的兩條平行弦,BEAC交CD于E,過(guò)A點(diǎn)的切線交DC延長(zhǎng)線于P,若AC=3
2
,則PC•CE的值是( 。
A.18B.6C.6
2
D.9
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)證明:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知AB是⊙O的直徑,PB是⊙O的切線,PA交⊙O于C,AB=3cm,PB=4cm,則BC=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有人請(qǐng)?zhí)┛说靥汗緸槟承陆C(jī)場(chǎng)的環(huán)形通道鋪設(shè)地毯.當(dāng)泰克先生拿到計(jì)劃藍(lán)圖(如圖)時(shí),他有些生氣:與內(nèi)圓相切的一條弦的長(zhǎng)度是唯一給出的尺寸數(shù)據(jù).“這就難了,”泰克想,“兩圓之間環(huán)形陰影的面積不知道,怎么能估計(jì)出大致需要多少地毯呢?最好去找找設(shè)計(jì)師薩普先生.”薩普先生是個(gè)優(yōu)秀的幾何學(xué)家,他對(duì)此倒是處之泰然:“對(duì)我來(lái)說(shuō),有這一個(gè)數(shù)據(jù)就夠了,把這個(gè)數(shù)據(jù)代入公式就能求出圓環(huán)的面積.”泰克先生吃了一驚,略一思索,便現(xiàn)出了笑容:“謝謝你,薩普先生,無(wú)須勞駕你動(dòng)用什么公式了,我可以馬上得出答案.”你知道泰克先生是怎么算的嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線與圓的位置關(guān)系有三種分別是______,______,______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖AB是⊙O的直徑,從⊙O外一點(diǎn)C引⊙O切線CD,D是切點(diǎn),再?gòu)腃點(diǎn)引割線交⊙O于E、F交BD于G,EF⊥AB于H,已知AB=4,OH=HB,CE=
1
2
EF,則CG=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案