【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)①將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
②若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2;請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(2)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標(biāo).
【答案】
(1)解:①△ABC旋轉(zhuǎn)后對應(yīng)的△A1B1C,△ABC平移后對應(yīng)的△A2B2C2如圖所示
②如圖所示:旋轉(zhuǎn)中心的坐標(biāo)為:( ,﹣1)
(2)解:∵PO∥AC,
∴ = ,
∴ = ,
∴OP=2,
∴點P的坐標(biāo)為(﹣2,0)
【解析】(1)延長AC到A1 , 使得AC=A1C,延長BC到B1 , 使得BC=B1C,利用點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),得出圖象平移單位,即可得出△A2B2C2;根據(jù)△△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2進而得出,旋轉(zhuǎn)中心即可;(2)根據(jù)B點關(guān)于x軸對稱點為A2 , 連接AA2 , 交x軸于點P,再利用相似三角形的性質(zhì)求出P點坐標(biāo)即可.
【考點精析】解答此題的關(guān)鍵在于理解軸對稱-最短路線問題的相關(guān)知識,掌握已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將點向右平移個單位到點,再將點繞坐標(biāo)原點順時針旋轉(zhuǎn)到點.直接寫出點,的坐標(biāo);23.
在平面直角坐標(biāo)系中,將第二象限內(nèi)的點向右平移個單位到第一象限點,再將點繞坐標(biāo)原點順時針旋轉(zhuǎn)到點,直接寫出點,的坐標(biāo);
在平面直角坐標(biāo)系中.將點沿水平方向平移個單位到點,再將點繞坐標(biāo)原點順時針旋轉(zhuǎn)到點,直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD與角平分線AE相交點F,過點C作CH⊥AE于G,交AB于H.
(1)直接寫出∠CFE的度數(shù)________;
(2)求證:CF=BH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為△ABC內(nèi)一點,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,則BD的長為( )
A. 1 B. 1.5 C. 2.5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在∠AOB的兩邊截取OA=OB,OC=OD,連接AD,BC交于點P,則下列結(jié)論中①△AOD≌△BOC,②△APC≌△BPD,③點P在∠AOB的平分線上。 正確的是 (填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達(dá)蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了考察冰川的融化狀況,一支科考隊在某冰川上設(shè)定一個以大本營O為圓心,半徑為4km的圓形考察區(qū)域,線段P1P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時,邊界線沿著與其垂直的方向朝考察區(qū)域平行移動,若經(jīng)過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是s= n2﹣ n+ .以O(shè)為原點,建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別為(﹣4,9)、(﹣13、﹣3).
(1)求線段P1P2所在直線對應(yīng)的函數(shù)關(guān)系式;
(2)求冰川邊界線移動到考察區(qū)域所需的最短時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com