(2007•德陽)如圖,已知平行四邊形ABCD中,點E為BC邊的中點,延長DE,AB相交于點F.
求證:CD=BF.

【答案】分析:欲證CD=BF,需證△CDE≌△BFE.由于四邊形ABCD是平行四邊形,所以DC∥BF,∠1=∠3,∠C=∠2.又點E為BC邊的中點,根據(jù)AAS,所以△CDE≌△BFE.
解答:證明:∵四邊形ABCD是平行四邊形,
∴DC∥AB,即DC∥AF.
∴∠1=∠F,∠C=∠2.
∵E為BC的中點,
∴CE=BE.
∴△DCE≌△FBE.
∴CD=BF.
點評:本題考查全等三角形的判定和性質(zhì),解題的關鍵是靈活應用平行四邊形的各個性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•德陽)如圖,已知與x軸交于點A(1,0)和B(5,0)的拋物線的頂點為C(3,4),拋物線l2與l1關于x軸對稱,頂點為C′.
(1)求拋物線l2的函數(shù)關系式;
(2)已知原點O,定點D(0,4),l2上的點P與l1上的點P′始終關于x軸對稱,則當點P運動到何處時,以點D,O,P,P′為頂點的四邊形是平行四邊形;
(3)在l2上是否存在點M,使△ABM是以AB為斜邊且一個角為30°的直角三角形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年四川省德陽市中考數(shù)學試卷(解析版) 題型:解答題

(2007•德陽)如圖,已知與x軸交于點A(1,0)和B(5,0)的拋物線的頂點為C(3,4),拋物線l2與l1關于x軸對稱,頂點為C′.
(1)求拋物線l2的函數(shù)關系式;
(2)已知原點O,定點D(0,4),l2上的點P與l1上的點P′始終關于x軸對稱,則當點P運動到何處時,以點D,O,P,P′為頂點的四邊形是平行四邊形;
(3)在l2上是否存在點M,使△ABM是以AB為斜邊且一個角為30°的直角三角形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:填空題

(2007•德陽)如圖,已知等腰△ABC的面積為8cm2,點D,E分別是AB,AC邊的中點,則梯形DBCE的面積為    cm2

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2007•德陽)如圖,已知平行四邊形ABCD中,點E為BC邊的中點,延長DE,AB相交于點F.
求證:CD=BF.

查看答案和解析>>

同步練習冊答案