【題目】如圖,某小區(qū)樓房附近有一個(gè)斜坡,坡角為30°,小王發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡腳到樓房的距離CB=8m.在D點(diǎn)處觀察點(diǎn)A的仰角為60°.求樓房AB的高度(結(jié)果保留根號(hào)).

【答案】AB=12+

【解析】

DEBCDFAB,根據(jù)正弦、余弦的定義求出DE、EC,根據(jù)正切的概念求出AF,計(jì)算AF+FB即可得到AB的高度.

解:作DEBC,DFAB

RtCDE中,

CD=6,∠DCE=30°,

DE=6×sin30°=3=FBEC=6×cos30°=,

EB=EC+CB=,

RtADF中,

∵∠ADF=60°,DF=EB=,

AF=DF×tan60°=9+,

AB=AF+FB=12+;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)。

(1)以O(shè)點(diǎn)為位似中心在y軸的左側(cè)將OBC放大到兩倍畫出圖形。

(2)寫出B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B、C的坐標(biāo);

(3)如果OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對(duì)應(yīng)點(diǎn)M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A2,1),B兩點(diǎn).

1)求出反比例函數(shù)與一次函數(shù)的表達(dá)式;

2)請(qǐng)直接寫出B點(diǎn)的坐標(biāo),并指出使反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,sinC,長度為2的線段ED在射線CF上滑動(dòng),點(diǎn)B在射線CA上,且BC=5,則△BDE周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖1,正方形ABCD的對(duì)角線交于點(diǎn)O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為 ;

問題探究

2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動(dòng)點(diǎn),求A、P之間的最大距離;

問題解決

3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因?yàn)楦G洞除了它的堅(jiān)固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對(duì)即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(NAD的中點(diǎn),MNAD),小寶說,門角B到門窗弓形弧AD的最大距離是BM之間的距離.小貝說這不是最大的距離,你認(rèn)為誰的說法正確?請(qǐng)通過計(jì)算求出門角B到門窗弓形弧AD的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線的頂點(diǎn)為點(diǎn)P,與y軸交于點(diǎn)B.點(diǎn)A坐標(biāo)為(3,2).點(diǎn)M為拋物線上一動(dòng)點(diǎn),以點(diǎn)M為圓心,MA為半徑的圓交x軸于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).

1)如圖②,當(dāng)點(diǎn)M與點(diǎn)B重合時(shí),求CD的長;

2)當(dāng)點(diǎn)M在拋物線上運(yùn)動(dòng)時(shí),CD的長度是否發(fā)生變化?若變化,求出CD關(guān)于點(diǎn)M橫坐標(biāo)x的函數(shù)關(guān)系式;若不發(fā)生變化,求出CD的長;

3)當(dāng)△ACP與△ADP相似時(shí),求出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對(duì)稱、旋轉(zhuǎn)等方法可以計(jì)算等分正多邊形面積的方案.

1)請(qǐng)聰明的你將下面圖、圖、圖的等邊三角形分別割成2個(gè)、3個(gè)、4個(gè)全等三角形;

2)如圖,等邊△ABC邊長AB4,點(diǎn)O為它的外心,點(diǎn)M、N分別為邊AB、BC上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且∠MON120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;

3)如圖,等邊△ABC的邊長AB4,點(diǎn)P為邊CA延長線上一點(diǎn),點(diǎn)Q為邊AB延長線上一點(diǎn),點(diǎn)DBC邊中點(diǎn),且∠PDQ120°,若PAx,請(qǐng)用含x的代數(shù)式表示△BDQ的面積SBDQ

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,tanA,M,N分別在邊AD,BC上,將四邊形AMNB沿MN翻折,使AB的對(duì)應(yīng)線段EF經(jīng)過頂點(diǎn)D,當(dāng)EFAD時(shí),的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC內(nèi)接于⊙OCACB,過點(diǎn)AAEBC,交⊙O于點(diǎn)E,過點(diǎn)C作⊙O的切線交AE的延長線于點(diǎn)D,已知AB6,BE3

1)求證:四邊形ABCD為平行四邊形;

2)延長AODC的延長線于點(diǎn)F,求AF的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案