【題目】下面我們做一次折疊活動:
第一步,在一張寬為2的矩形紙片的一端,利用圖(1)的方法折出一個正方形,然后把紙片展平,折痕為MC;
第二步,如圖(2),把這個正方形折成兩個相等的矩形,再把紙片展平,折痕為FA;
第三步,折出內(nèi)側(cè)矩形FACB的對角線AB,并將AB折到圖(3)中所示的AD處,折痕為AQ.
根據(jù)以上的操作過程,完成下列問題:
(1)求CD的長.
(2)請判斷四邊形ABQD的形狀,并說明你的理由.
【答案】
(1)解:∵∠M=∠N=∠MBC=90°,
∴四邊形MNCB是矩形,
∵M(jìn)B=MN=2,
∴矩形MNCB是正方形,
∴NC=CB=2,
由折疊得:AN=AC= NC=1,
Rt△ACB中,由勾股定理得:AB= = ,
∴AD=AB= ,
∴CD=AD﹣AC= ﹣1;
(2)解:四邊形ABQD是菱形,理由是:
由折疊得:AB=AD,∠BAQ=∠QAD,
∵BQ∥AD,
∴∠BQA=∠QAD,
∴∠BAQ=∠BQA,
∴AB=BQ,
∴BQ=AD,BQ∥AD,
∴四邊形ABQD是平行四邊形,
∵AB=AD,
∴四邊形ABQD是菱形.
【解析】(1)首先證明四邊形MNCB為正方形,然后再依據(jù)折疊的性質(zhì)得到:CA=1,AB=AD,最后再依據(jù)CD=AD-AC求解即可;
(2)根據(jù)平行線的性質(zhì)和折疊的性質(zhì)可得到∠BAQ=∠BQA,然后依據(jù)等角對等邊的性質(zhì)得到AB=BQ,接下來,依據(jù)一組對邊平行且相等的四邊形為平行四邊形可證明四邊形ABQD是平行四邊形,再由AB=AD,可得四邊形ABQD是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=45°,點M、N在邊OA上,OM=x,ON=x+4,點P是邊OB上的點.若使點P、M、N構(gòu)成等腰三角形的點P恰好有三個,則x的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線AB:y= x+4交x軸于點A,交y軸于點B.直線CD:y=﹣ x﹣1與直線AB相交于點M,交x軸于點C,交y軸于點D.
(1)直接寫出點B和點D的坐標(biāo);
(2)若點P是射線MD上的一個動點,設(shè)點P的橫坐標(biāo)是x,△PBM的面積是S,求S與x之間的函數(shù)關(guān)系;
(3)當(dāng)S=20時,平面直角坐標(biāo)系內(nèi)是否存在點E,使以點B、E、P、M為頂點的四邊形是平行四邊形?若存在,請直接寫出所有符合條件的點E的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量q(輛/小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時)指通過道路指定斷面的車輛速度,密度k(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù).
為配合大數(shù)據(jù)治堵行動,測得某路段流量q與速度v之間關(guān)系的部分?jǐn)?shù)據(jù)如下表:
(1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是 (只填上正確答案的序號)
①q=90v+100;②q=;③.
(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速度為多少時,流量達(dá)到最大?最大流量是多少?
(3)已知q,v,k滿足q=vk,請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題.
①市交通運行監(jiān)控平臺顯示,當(dāng)12≤v<18時道路出現(xiàn)輕度擁堵.試分析當(dāng)車流密度k在什么范圍時,該路段將出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,求流量q最大時d的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年下半年開始,不同品牌的共享單車出現(xiàn)在城市的大街小巷.現(xiàn)已知A品牌共享單車計費方式為:初始騎行單價為1元/半小時,不足半小時按半小時計算.內(nèi)設(shè)邀請機制,每邀請一位好友注冊認(rèn)證并充值押金成功,雙方騎行單價均降價0.1元/半小時,騎行單價最低可降至0.1元/半小時(比如,某用戶邀請了3位好友,則騎行單價為0.7元/半小時).B品牌共享單車計費方式為:0.5元/半小時,不足半小時按半小時計算.
(1)某用戶準(zhǔn)備選擇A品牌共享單車使用,設(shè)該用戶邀請好友x名(x為整數(shù),x≥0),該用戶的騎行單價為y元/半小時.請寫出y關(guān)于x的函數(shù)解析式.
(2)若有A,B兩種品牌的共享單車各一輛供某用戶一人選擇使用,請你根據(jù)該用戶已邀請好友的人數(shù),給出經(jīng)濟實惠的選擇建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:探究函數(shù)y=|x|﹣2的圖象與性質(zhì).
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=|x|﹣2的圖象與性質(zhì)進(jìn)行了探究.
下面是小華的探究過程,請補充完整:
(1)在函數(shù)y=|x|﹣2中,自變量x可以是任意實數(shù);
如表是y與x的幾組對應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m=;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點,則n=;
(2)①如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;
(3)該函數(shù)的最小值為;
(4)已知直線 與函數(shù)y=|x|﹣2的圖象交于C、D兩點,當(dāng)y1≥y時x的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com