【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動(dòng)物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測(cè)得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),y與x成反比例).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問(wèn)血液中藥物濃度不低于4微克/毫升的持續(xù)時(shí)間多少小時(shí)?
【答案】
(1)
解:當(dāng)0≤x<4時(shí),設(shè)直線解析式為:y=kx,
將(4,8)代入得:8=4k,
解得:k=2,
故直線解析式為:y=2x,
當(dāng)4≤x≤10時(shí),設(shè)直反比例函數(shù)解析式為:,
將(4,8)代入得:8=,
解得:a=32,
故反比例函數(shù)解析式為:;
因此血液中藥物濃度上升階段的函數(shù)關(guān)系式為y=2x(0≤x<4),下降階段的函數(shù)關(guān)系式為(4≤x≤10)
(2)
解:當(dāng)y=4,則4=2x,解得:x=2,
當(dāng)y=4,則4=,解得:x=8,
∵8﹣2=6(小時(shí)),
∴血液中藥物濃度不低于4微克/毫升的持續(xù)時(shí)間6小時(shí).
【解析】(1)分別利用正比例函數(shù)以及反比例函數(shù)解析式求法得出即可;
(2)利用y=4分別得出x的值,進(jìn)而得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為8cm,E、F、G、H分別是AB、BC、CD、DA上的動(dòng)點(diǎn),且AE=BF=CG=DH.
(1)求證:四邊形EFGH是正方形
(2)判斷直線EG是否經(jīng)過(guò)一個(gè)定點(diǎn),并說(shuō)明理由
(3)求四邊形EFGH面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)生小劉回鄉(xiāng)創(chuàng)辦小微企業(yè),初期購(gòu)得原材料若干噸,每天生產(chǎn)相同件數(shù)的某種產(chǎn)品,單件產(chǎn)品所耗費(fèi)的原材料相同.當(dāng)生產(chǎn)6天后剩余原材料36噸,當(dāng)生產(chǎn)10天后剩余原材料30噸.若剩余原材料數(shù)量小于或等于3噸,則需補(bǔ)充原材料以保證正常生產(chǎn).
(1)求初期購(gòu)得的原材料噸數(shù)與每天所耗費(fèi)的原材料噸數(shù);
(2)若生產(chǎn)16天后,根據(jù)市場(chǎng)需求每天產(chǎn)量提高20%,則最多再生產(chǎn)多少天后必須補(bǔ)充原材料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分線交于點(diǎn)E,則∠AEC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.
(1)試判斷原方程根的情況;
(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),則A,B兩點(diǎn)間的距離是否存在最大或最小值?若存在,求出這個(gè)值;若不存在,請(qǐng)說(shuō)明理由.(友情提示:AB=|x2﹣x1|)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用四條線段首尾相接連成一個(gè)框架,其中AB=12,BC=14,CD=18,DA=24,則A、B、C、D任意兩點(diǎn)之間的最長(zhǎng)距離為( )
A.24cm
B.26cm
C.32cm
D.36cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com