精英家教網 > 初中數學 > 題目詳情

【題目】如圖:圖形都是由面積為1的正方形按一定的規(guī)律組成,其中第(1)個圖形中面積為1的正方形有9個,第(2)個圖形中面積為1的正方形有14個,,按此規(guī)律.則第(9)個圖形中面積為1的正方形的個數為(。

A.49B.45C.54D.50

【答案】A

【解析】

由第1個圖形有9個面積為1的小正方形,第2個圖形有9+5=14個面積為1的小正方形,第3個圖形有9+5×2=19個面積為1的小正方形,…由此得出第n個圖形有9+5×(n-1=5n+4個面積為1的小正方形,由此求得答案即可.

解:第1個圖形面積為1的小正方形有9個,
2個圖形面積為1的小正方形有9+5=14個,
3個圖形面積為1的小正方形有9+5×2=19個,

n個圖形面積為1的小正方形有9+5×(n-1=5n+4個,
所以第(9)個圖形中面積為1的小正方形的個數為5×9+4=49個.
故選:A

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知反比例函數,在每個象限內y隨著x的增大而增大,點Pa1 2)在這個反比例函數上,a的值可以是(

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,點分別是的中點,則下列四個判斷中不一定正確的是()

A. 四邊形一定是平行四邊形

B. ,則四邊形是矩形

C. 若四邊形是菱形,則是等邊三角形

D. 若四邊形是正方形,則是等腰直角三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為進一步推進青少年毒品預防教育“627“工程,切實提高廣大青少年識毒、防毒、拒毒的意識和能力,我市高度重視全國青少年禁毒知識競賽活動.針對某校七年級學生的知識競賽成績繪制了如圖不完整的統(tǒng)計圖表.

知識競賽成績頻數分布表

組別

成績(分數)

人數

A

95≤x<100

300

B

90≤x<95

a

C

85≤x<90

150

D

80≤x<85

200

E

75≤x<80

b

根據所給信息,解答下列問題.

(1)a____,b____

(2)請求出C組所在扇形統(tǒng)計圖中的圓心角的度數.

(3)補全知識競賽成績頻數分布直方圖.

(4)已知我市七年級有180000名學生,請估算全市七年級知識競賽成績低于80分的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了改善教室空氣環(huán)境,某校九年級1班班委會計劃到朝陽花卉基地購買綠植.已知該基地一盆綠蘿與一盆吊蘭的價格之和是12元.班委會決定用60元購買綠蘿,用90元購買吊蘭,所購綠蘿數量正好是吊蘭數量的兩倍.

(1)分別求出每盆綠蘿和每盆吊蘭的價格;

(2)該校九年級所有班級準備一起到該基地購買綠蘿和吊蘭共計90盆,其中綠蘿數量不超過吊蘭數量的一半,該基地特地對吊蘭價格給出了如下的優(yōu)惠政策,一次性購買的吊蘭超過20盆時,超過部分的吊蘭每盆的價格打8折,根據該基地的優(yōu)惠信息,九年級購買這兩種綠植各多少盆時總費用最少?最少費用是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖.在ABC中,C=90°,AC=BC,AB=30cm,點PAB上,AP=10cm,點E從點P出發(fā)沿線段PA2cm/s的速度向點A運動,同時點F從點P出發(fā)沿線段PB1cm/s的速度向點B運動,點E到達點A后立刻以原速度沿線段AB向點B運動,在點EF運動過程中,以EF為邊作正方形EFGH,使它與ABC在線段AB的同側,設點E、F運動的時間為ts)(0<t<20).

(1)當點H落在AC邊上時,求t的值;

(2)設正方形EFGHABC重疊部分的面積為S.①試求S關于t的函數表達式;以點C為圓心,t為半徑作C,當CGH所在的直線相切時,求此時S的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了解本校學生平均每天的課外做作業(yè)的時間情況,隨機抽取部分學生進行問卷調查,并將調查的結果分為A、B、CD四個等級(設做作業(yè)時間為t小時,At<1;B:1≤t<1.5;C:1.5≤t<2;Dt≥2)根據調查結果繪成了如下兩幅不完整的統(tǒng)計圖.

請根據圖中信息,解答下列問題:

(1)本次調查中,抽取的學生人數是 ;

(2)圖2α的度數是 ,并補全圖1條形統(tǒng)計圖;

(3)該校共有2800名學生名,請估計作業(yè)時間不少于2小時的人數為 ;

(4)在此次調查中,甲班有2人平均每天的作業(yè)時間超過2小時,乙班有3名學生平均每天作業(yè)時間超過2小時,現(xiàn)從這5人中選取2人參加座談會,請用樹狀圖或列表的方法,求出所選的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一次函數的圖象經過,兩點.

1)求這個一次函數的解析式;

2)試判斷點是否在這個一次函數的圖象上;

3)求此函數圖象與軸,軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市居民生活用水實行階梯水價收費,具體收費標準見下表:

每戶每月用水量

水的價格(單位:元/)

不超過20噸的部分

1.6

超過20噸且不超過30噸的部分

2.4

超過30噸的部分

3.3

例:甲用戶1月份用水25噸,應繳水費 ().

(1)若乙用戶1月份用水10噸,則應繳水費________元;

(2)若丙用戶1月份應繳水費62.6元,則用水________噸;.

(3)若丁用戶1、2月份共用水60(1月份用水量超過了2月份),設2月份用水噸,求丁用戶1、2月份各應繳水費多少元.(用含的代數式表示)

查看答案和解析>>

同步練習冊答案