如下圖,在Rt△ABC中,∠ACB=90°,D是AB邊上任意的一點(diǎn)(異于A、B),以BD為直徑的⊙0與邊AC相切于點(diǎn)E,連結(jié)DE并延長,與BC的延長線交于點(diǎn)F.
(1)求證:BD=BF;
(2)若BC=12,AD=8,求BF的長.
(1)連OE證平行(2)△AOE∽△ABC得BF=BD=12
【解析】
試題分析:連OE,因?yàn)镋是切點(diǎn),所以O(shè)E垂直于AC,即角AEO=90,又因?yàn)榻茿CB=90,所以O(shè)E平行于BC,又因?yàn)镺點(diǎn)是BD的中點(diǎn),所以E也是DF的中點(diǎn),又因?yàn)樵趫A中BE垂直DE,所以三角形BDF是等腰三角形,即BD=BF
(2)因?yàn)镺E=6,所以半徑是6,即BD=12,BF=BD=12
考點(diǎn):相似三角形
點(diǎn)評:本題屬于對相似三角形判定定理的熟練把握和運(yùn)用
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(湖北黃石卷)數(shù)學(xué)(解析版) 題型:選擇題
如下圖,在Rt△ABC中,∠ACB=900,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB交于點(diǎn)D,則AD的長為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com