【題目】如圖,直線y=﹣2x+6x軸,y軸分別交A,B兩點,點A關(guān)于原點O的對稱點是點C,動點EA出發(fā)以每秒1個單位的速度運動到點C,點D在線段OB上滿足tanDEO2,過E點作EFAB于點F,點A關(guān)于點F的對稱點為點G,以DG為直徑作M,設(shè)點E運動的時間為t秒;

1)當點E在線段OA上運動,t  時,△AEF與△EDO的相似比為1;

2)當My軸相切時,求t的值;

3)若直線EGM交于點N,是否存在t使NG,若存在,求出t的值;若不存在,說明理由.

【答案】1;(2t5;(3)存在,t

【解析】

1)先求直線與坐標軸的交點坐標,再證AEF∽△EDO∽△ABO,由AEFEDO的相似比為1,即可求得t的值;

2)由⊙My軸相切可知:DGy軸,分兩種情況:0≤t≤33t≤6,分別由D、G的縱坐標相等建立方程求解即可;

3)分三種情況:0≤t≤t≤33t≤6,分別建立方程求解即可.

解:(1)在y=﹣2x+6中,令x0,得:y6,

y0,得:﹣2x+60

解得:x3,

A30),B06),C(﹣3,0

OA3,OB6AB3,AEtOE3t,

tanBAO2

tanDEO2

∴∠BAO=∠DEO

EFAB

∴∠AFE=∠DOE90°

∴△AEF∽△EDO∽△ABO

,即

AFt;

∵△AEFEDO的相似比為1,

,即OEAF

3t×t,

解得:t;

故答案為:t;

2)∵⊙My軸相切

DGy

0≤t≤3時,

tanDEO2

,AEF∽△ABO

∵點AG關(guān)于點F對稱

代入中,得,

解得,

G3t,t),D062t),

t62t,解得:t;

3t≤6時,同理得G3t,t),D02t6),

t2t6,解得:t5,

綜上所述,當⊙My軸相切時,t5;

3)存在.

0≤t≤時,G3t,t),D062t),

∵點A關(guān)于點F的對稱點為點G,EFAB

EGEAt

∵∠OEG=∠OAB+EGA2OAB,∠OED=∠OAB

∴∠GED=∠OED=∠OAB

DG為直徑

∴∠DNG=∠DNE=∠DOE90°,DEDE

∴△DEN≌△DEOAAS

ENOE3t,NGENEG3tt32t,

32t

解得:t,

t≤3時,NGEGENt﹣(3t)=2t3

2t3,

解得:t

3t≤6時,如圖2,連接DN,過GGHx軸于H,

DG是直徑,

∴∠DNG=∠DNE90°,

∵∠DMN=∠EMO

∴△DMN∽△EMO

∴∠MDN=∠OEM

GHy

,即,

由(2)得,

軸,

,

,

DMODOM2t3)﹣t3)=t3

tanOEM

EMOEt3),

sinOEMsinMDN

MN×t3)=t3

NGEGEMMNtt3)﹣t3)=t,

,

解得:t;

綜上所述,t

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個公共點,其橫坐標為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°

1)求∠ACB的度數(shù);

2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈cos37°≈,tan37°≈sin48°≈,cos48°≈,tan48°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰RtABC的直角邊長為4,以A為圓心,直角邊AB為半徑作弧BC1,交斜邊AC于點C1,C1B1AB于點B1,設(shè)弧BC1,C1B1,B1B圍成的陰影部分的面積為S1,然后以A為圓心,AB1為半徑作弧B1C2,交斜邊AC于點C2,C2B2AB于點B2,設(shè)弧B1C2,C2B2,B2B1圍成的陰影部分的面積為S2,按此規(guī)律繼續(xù)作下去,得到的陰影部分的面積S3_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx+6與反比例函數(shù)yk0)的圖象交于點MN,與x軸、y軸分別交于點B、A,作MEx軸于點ENFx軸于點F,過點EF分別作EGAB,FHAB,分別交y軸于點G、H,MEHF于點K,若四邊形MKFN和四邊形HGEK的面積和為12,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一張盾構(gòu)隧道斷面結(jié)構(gòu)圖.隧道內(nèi)部為以O為圓心,AB為直徑的圓.隧道內(nèi)部共分為三層,上層為排煙道,中間為行車隧道,下層為服務層.點A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點B到路面的距離為4.0m.請求出路面CD的寬度.(精確到0.1m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點處觀測旗桿頂點A的仰角為50°,觀測旗桿底部B點的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;

(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出

1)如圖①,在△ABC中,ABAC10BC12,點O是△ABC的外接圓的圓心,則OB的長為   

問題探究

2)如圖②,已知矩形ABCD,AB4,AD6,點EAD的中點,以BC為直徑作半圓O,點P為半圓O上一動點,求E、P之間的最大距離;

問題解決

3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D上的一點P修建一條筆直的小路DP.已知ADBC,∠ADB45°,BD120米,BC160米,過弦BC的中點EEFBC于點F,又測得EF40米.修建小路平均每米需要40元(小路寬度不計),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計算修建這條小路最多要花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知拋物線經(jīng)過坐標原點Ox軸上另一點E,頂點M的坐標為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3

1)求直線y=3與拋物線交點的坐標;

2)將矩形ABCD以每秒1個單位長度的速度從圖⑴所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖(2)所示).

①當時,判斷點P是否在直線ME上,并說明理由;

②設(shè)以P、N、CD為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案