【題目】如圖,在扇形OAB中,∠O=60°,OA=4 ,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F(xiàn)分別在OA, ,OB上,則圖中陰影部分的面積為

【答案】8π﹣8
【解析】解:連接EF、OC交于點H,
則OH=2 ,
∴FH=OH×tan30°=2,
∴菱形FOEC的面積= ×4 ×4=8 ,
扇形OAB的面積= =8π,
則陰影部分的面積為8π﹣8 ,
所以答案是:8π﹣8
【考點精析】認真審題,首先需要了解菱形的性質(菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半),還要掌握扇形面積計算公式(在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2))的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使ABC≌△DEF,還需要添加一個條件是( 。

A. BCA=F B. BCEF C. A=EDF D. AD=CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖矩形ABCD中,AD=1,CD= ,連接AC,將線段AC、AB分別繞點A順時針旋轉90°至AE、AF,線段AE與弧BF交于點G,連接CG,則圖中陰影部分面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點,其中A,B兩點的橫坐標分別為﹣1和﹣4,且拋物線過原點.

(1)求拋物線的解析式;
(2)在坐標軸上是否存在點C,使△ABC為等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)若點P是線段AB上不與A,B重合的動點,過點P作PE∥OA,與拋物線第三象限的部分交于一點E,過點E作EG⊥x軸于點G,交AB于點F,若SBGF=3SEFP , 求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將點P(2,)繞原點O順時針旋轉90°后得到點P′,則點P′的坐標是( 。

A. (-2, B. ,2) C. (2,- D. ,-2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某餐廳計劃購買12張餐桌和一批椅子(不少于12把),現(xiàn)從甲、乙兩商場了解到同一型號的餐桌報價都為每張200元,餐椅報價都為每把50元.甲商場規(guī)定:每購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌、餐椅均按報價的八五折銷售,那么,什么情況下到甲商場購買更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連接EF.

(1)說明線段BE與AF的位置關系和數(shù)量關系;
(2)如圖②,當△CEF繞點C順時針旋轉α(0°<α<90°)時,連接AF,BE,(1)中的結論是否仍然成立?如果成立,請證明;如果不成立,請說明理由;
(3)如圖③,當△CEF繞點C順時針旋轉α(0°<α<180°)時,延長FC交AB于點D,如果AD=6﹣2 ,求旋轉角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知關于x的方程kx=11﹣2x有整數(shù)解,則負整數(shù)k的值為   

(2)若a+b+c=0,且abc,以下結論:

a>0,c>0;

②關于x的方程ax+b+c=0的解為x=1;

a2=(b+c2;

的值為02;

⑤在數(shù)軸上點A、B、C表示數(shù)ab、c,若b<0,則線段AB與線段BC的大小關系是ABBC

其中正確的結論是   (填寫正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸交于點,直線x軸、y軸分別交于B、C兩點,并與直線相交于點D,若

求點D的坐標;

求出四邊形AOCD的面積;

Ex軸上一點,且為等腰三角形,寫出點E的坐標直接寫出答案

查看答案和解析>>

同步練習冊答案