【題目】已知PA與⊙O相切于點(diǎn)A,B、C是⊙O上的兩點(diǎn)
(1)如圖①,PB與⊙O相切于點(diǎn)B,AC是⊙O的直徑若∠BAC=25°;求∠P的大小
(2)如圖②,PB與⊙O相交于點(diǎn)D,且PD=DB,若∠ACB=90°,求∠P的大小
【答案】(1)∠P=50°;(2)∠P=45°.
【解析】
(1)連接OB,根據(jù)切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據(jù)三角形內(nèi)角和定理計(jì)算即可;
(2)連接AB、AD,根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到AB⊥PA,根據(jù)等腰直角三角形的性質(zhì)解答.
解:(1)如圖①,連接OB.
∵PA、PB與⊙O相切于A、B點(diǎn),
∴PA=PB,
∴∠PAO=∠PBO=90°
∴∠PAB=∠PBA,
∵∠BAC=25°,
∴∠PBA=∠PAB=90°一∠BAC=65°
∴∠P=180°-∠PAB-∠PBA=50°;
(2)如圖②,連接AB、AD,
∵∠ACB=90°,
∴AB是的直徑,∠ADB=90·
∵PD=DB,
∴PA=AB.
∵PA與⊙O相切于A點(diǎn)
∴AB⊥PA,
∴∠P=∠ABP=45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2﹣x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=﹣x+3經(jīng)過點(diǎn)B,C.
(1)求拋物線的解析式;
(2)若點(diǎn)P為直線BC下方的拋物線上一動點(diǎn)(不與點(diǎn)B,C重合),則△PBC的面積能夠等于△BOC的面積嗎?若能,求出相應(yīng)的點(diǎn)P的坐標(biāo);若不能,請說明理由;
(3)如圖2,現(xiàn)把△BOC平移至如圖所示的位置,此時(shí)三角形水平方向一邊的兩個(gè)端點(diǎn)點(diǎn)O′與點(diǎn)B′都在拋物線上,稱點(diǎn)O′和點(diǎn)B′為△BOC在拋物線上的一“卡點(diǎn)對”;如果把△BOC旋轉(zhuǎn)一定角度,使得其余邊位于水平方向然后平移,能夠得到這個(gè)三角形在拋物線上新的“卡點(diǎn)對”.請直接寫出△BOC在已知拋物線上所有“卡點(diǎn)對”的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c過等腰Rt△OAB的A,B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直角頂點(diǎn)A(0,3).
(1)求b,c的值.
(2)P是AB上方拋物線上的一點(diǎn),作PQ⊥AB交OB于點(diǎn)Q,連接AP,是否存在點(diǎn)P,使四邊形APQO是平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:已知:△ABC是⊙O的內(nèi)接三角形.求作:△ABC中∠BAC的平分線.
小明的作法如下:
(1)作BC邊的垂直平分線DE,交BC于點(diǎn)D,交弧BC于點(diǎn)E;
(2)連接AE,交BC邊于點(diǎn)F;則線段AF為所求△ABC中∠BAC的平分線.根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,
①在圖中補(bǔ)全圖形(尺規(guī)作圖,保留作圖痕跡);
②完成下面的證明.
證明:∵OB=OC,DE是線段BC的垂直平分線
∴圓心O在直線DE上( ).
∵DE⊥BC,
∴( ).
∴∠BAE=∠CAE( ),
∴線段AF為所求△ABC中∠BAC的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為菱形ABCD的一條對角線,E、F在BD上,且四邊形ACEF為矩形,若EF=BD,則 的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=60°,點(diǎn)O為AB上一點(diǎn),且3AO=AB,以OA為半徑作半圓O,交AC于點(diǎn)D,AB于點(diǎn)E,DE與OC相交于F.
(1)求證:CB與⊙O相切;
(2)若AB=6,求DF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D作⊙O的切線DE交邊BC于點(diǎn)E,連結(jié)BD.
(1)求證:∠ABD=∠CDE.
(2)若AC=28,tanA=2,AD:DC=1:3,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,點(diǎn) D 為邊 BC 的點(diǎn),點(diǎn) E、F 分別是邊 AB、AC 上兩點(diǎn),且 EF∥BC,若 AE:EB=m,BD:DC=n,則( )
A.若 m>1,n>1,則 2S△AEF>S△ABDB.若 m>1,n<1,則 2S△AEF<S△ABD
C.若 m<1,n<1,則 2S△AEF<S△ABDD.若 m<1,n>1,則 2S△AEF<S△ABD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com