【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,連接DE交線段OA于點F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點,求 的值;
(3)若EA=EF=1,求圓O的半徑.

【答案】
(1)證明:連接OD,如圖1,

∵OB=OD,

∴△ODB是等腰三角形,

∠OBD=∠ODB①,

在△ABC中,∵AB=AC,

∴∠ABC=∠ACB②,

由①②得:∠ODB=∠OBD=∠ACB,

∴OD∥AC,

∵DH⊥AC,

∴DH⊥OD,

∴DH是圓O的切線


(2)解:如圖2,在⊙O中,∵∠E=∠B,

∴由(1)可知:∠E=∠B=∠C,

∴△EDC是等腰三角形,

∵DH⊥AC,且點A是EH中點,

設(shè)AE=x,EC=4x,則AC=3x,

連接AD,則在⊙O中,∠ADB=90°,AD⊥BD,

∵AB=AC,

∴D是BC的中點,

∴OD是△ABC的中位線,

∴OD∥AC,OD= AC= ×3x= ,

∵OD∥AC,

∴∠E=∠ODF,

在△AEF和△ODF中,

∵∠E=∠ODF,∠OFD=∠AFE,

∴△AEF∽△ODF,

,

= = ,

=


(3)解:如圖2,設(shè)⊙O的半徑為r,即OD=OB=r,

∵EF=EA,

∴∠EFA=∠EAF,

∵OD∥EC,

∴∠FOD=∠EAF,

則∠FOD=∠EAF=∠EFA=∠OFD,

∴DF=OD=r,

∴DE=DF+EF=r+1,

∴BD=CD=DE=r+1,

在⊙O中,∵∠BDE=∠EAB,

∴∠BFD=∠EFA=∠EAB=∠BDE,

∴BF=BD,△BDF是等腰三角形,

∴BF=BD=r+1,

∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,

在△BFD和△EFA中,

∴△BFD∽△EFA,

,

= ,

解得:r1= ,r2= (舍),

綜上所述,⊙O的半徑為


【解析】(1)根據(jù)同圓的半徑相等和等邊對等角證明:∠ODB=∠OBD=∠ACB,則DH⊥OD,DH是圓O的切線;(2)如圖2,先證明∠E=∠B=∠C,則H是EC的中點,設(shè)AE=x,EC=4x,則AC=3x,由OD是△ABC的中位線,得:OD= AC= ,證明△AEF∽△ODF,列比例式可得結(jié)論;(3)如圖2,設(shè)⊙O的半徑為r,即OD=OB=r,證明DF=OD=r,則DE=DF+EF=r+1,BD=CD=DE=r+1,證明△BFD∽△EFA,列比例式為: ,則 = ,求出r的值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】13分)(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°E、F分別是BC、CD上的點,且∠EAF=60°,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為

2)如圖2,在四邊形ABCD中,AB=AD∠B+∠D=180°E、F分別是BC、CD上的點,且∠EAF=∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?

3)如圖3,點A在點O的北偏西30°處,點B在點O的南偏東70°處,且AO=BO,點A沿正東方向移動249米到達(dá)E處,點B沿北偏東50°方向移動334米到達(dá)點F處,從點O觀測到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求EF之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( 。

A. ①②③④ B. ①②④ C. ①②③ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,ABC中,AB=AC,BAC=90°,點D是直線AB上的一動點(不和A、B重合),BECDE,交直線ACF.

1)點D在邊AB上時,試探究線段BD、ABAF的數(shù)量關(guān)系,并證明你的結(jié)論;

2)點DAB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MPNQ分別垂直平分ABAC.

(1)若△APQ的周長為12BC的長;

(2)BAC105°求∠PAQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點在 x 負(fù)半軸上,直角頂點 B y 軸上,點 C x 軸上方.

(1)如圖1所示,若A的坐標(biāo)是(﹣3,0),點 B的坐標(biāo)是(0,1),求點 C 的坐標(biāo);

(2)如圖2,過點 C CDy 軸于 D,請直接寫出線段OA,OD,CD之間等量關(guān)系;

(3)如圖3,若 x 軸恰好平分BAC,BC x 軸交于點 E,過點 C CFx 軸于 F,問 CF AE 有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD.

(1)求點C,D的坐標(biāo)及平行四邊形ABDC的面積.

(2)在y軸上是否存在一點P,連接PA,PB,使=2,若存在這樣一點,求出點P的坐標(biāo),若不存在,試說明理由.

(3)點P是四邊形ABCD邊上的點,若△OPC為等腰三角形時,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,E是直線ABCD內(nèi)部一點,ABCD,連接EA,ED

1)探究猜想:①若∠A=30°,D=40°,則∠AED等于多少度?

②若∠A=20°,D=60°,則∠AED等于多少度?

③猜想圖1中∠AEDEAB,EDC的關(guān)系并證明你的結(jié)論.

2)拓展應(yīng)用:如圖2,線段FE與長方形ABCD的邊AB交于點E,與邊CD 交于點F.圖2中①②分別是被線段FE隔開的2個區(qū)域(不含邊界),P是位于以上兩個區(qū)域內(nèi)的一點,猜想∠PEB,PFC,EPF的關(guān)系(不要求說明理由).

查看答案和解析>>

同步練習(xí)冊答案