【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長(zhǎng)線與AD的延長(zhǎng)線交于點(diǎn)E.
(注意:本題中的計(jì)算過程和結(jié)果均保留根號(hào))
(1)若∠A=60°,求BC的長(zhǎng);
(2)若sinA= ,求AD的長(zhǎng).
【答案】
(1)
解:∵∠A=60°,∠ABE=90°,AB=6,tanA= ,
∴∠E=30°,BE=tan60°6=6 ,
又∵∠CDE=90°,CD=4,sinE= ,∠E=30°,
∴CE= =8,
∴BC=BE﹣CE=6 ﹣8;
(2)
解:∵∠ABE=90°,AB=6,sinA= = ,
∴設(shè)BE=4x,則AE=5x,得AB=3x,
∴3x=6,得x=2,
∴BE=8,AE=10,
∴tanE= = = = ,
解得,DE= ,
∴AD=AE﹣DE=10﹣ = ,
即AD的長(zhǎng)是 .
【解析】(1)要求BC的長(zhǎng),只要求出BE和CE的長(zhǎng)即可,由題意可以得到BE和CE的長(zhǎng),本題得以解決;(2)要求AD的長(zhǎng),只要求出AE和DE的長(zhǎng)即可,根據(jù)題意可以得到AE、DE的長(zhǎng),本題得以解決.本題考查解直角三角形,解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數(shù)進(jìn)行解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】手工制作課上,小紅利用一些花布的邊角料,剪裁后裝飾手工畫,下面四個(gè)圖案是她剪裁出的空心不等邊三角形、等邊三角形、正方形、矩形花邊,其中,每個(gè)圖案花邊的寬度都相等,那么,每個(gè)圖案中花邊的內(nèi)外邊緣所圍成的幾何圖形不相似的是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,連接BD,在BD的延長(zhǎng)線上取一點(diǎn)E,在DB的延長(zhǎng)線上取一點(diǎn)F,使BF=DE,連接AF、CE.
求證:AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過點(diǎn)A作AE⊥BD,垂足為點(diǎn)E,若∠EAC=2∠CAD,則∠BAE=度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BF平分∠ABC,交AD于點(diǎn)F,CE平分∠BCD,交AD于點(diǎn)E,AB=6,EF=2,則BC長(zhǎng)為( )
A.8
B.10
C.12
D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請(qǐng)用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請(qǐng)用概率的知識(shí)加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的解析式為y=ax2 , 過點(diǎn)B1(1,0)作x軸的垂線,交拋物線于點(diǎn)A1(1,2);過點(diǎn)B2( ,0)作x軸的垂線,交拋物線于點(diǎn)A2;…;過點(diǎn)Bn(( )n﹣1 , 0)(n為正整數(shù))作x軸的垂線,交拋物線于點(diǎn)An , 連接AnBn+1 , 得Rt△AnBnBn+1 .
(1)求a的值;
(2)直接寫出線段AnBn , BnBn+1的長(zhǎng)(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列問題:
①當(dāng)n為何值時(shí),Rt△AnBnBn+1是等腰直角三角形?
②設(shè)1≤k<m≤n(k,m均為正整數(shù)),問:是否存在Rt△AkBkBk+1與Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的晾衣架,支架主視圖的基本圖形是菱形,其示意圖如圖2,晾衣架伸縮時(shí),點(diǎn)G在射線DP上滑動(dòng),∠CED的大小也隨之發(fā)生變化,已知每個(gè)菱形邊長(zhǎng)均等于20cm,且AH=DE=EG=20cm.
(1)當(dāng)∠CED=60°時(shí),CD=cm.
(2)當(dāng)∠CED由60°變?yōu)?20°時(shí),點(diǎn)A向左移動(dòng)了cm(結(jié)果精確到0.1cm)(參考數(shù)據(jù) ≈1.73).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com