【題目】如圖,三個半圓依次相外切,它們的圓心都在x軸上,并與直線y= x相切.設(shè)三個半圓的半徑依次為r1、r2、r3 , 則當r1=1時,r3=

【答案】9
【解析】解:由三個半圓依次與直線y=vx相切并且圓心都在x軸上, ∴y= x傾斜角是30°,
∴得,OO1=2r1 , 002=2r2=OO1+r1+r2=3r1+r2 , 003=2r3 ,
∴2r2=3r1+r2 ,
∴r2=3r1 ,
∵r1=1,
∴OO1=2,002=2r2=6r1=6,003=18,
∴r3=9.
所以答案是:9.
【考點精析】利用一次函數(shù)的性質(zhì)和相切兩圓的性質(zhì)對題目進行判斷即可得到答案,需要熟知一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;如果兩圓相切,那么切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點,MN⊥BC交AC于點N.動點P從點B出發(fā)沿射線BA以每秒 厘米的速度運動.同時,動點Q從點N出發(fā)沿射線NC運動,且始終保持MQ丄MP.設(shè)運動時間為t秒(t>0).
(1)△PBM與△QNM相似嗎?以圖1為例說明理由;
(2)若∠ABC=60°,AB=4 厘米. ①求動點Q的運動速度;
②設(shè)△APQ的面積為S(平方厘米),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形MNPQ的上底長為2,腰長為3,一個底角為60°.正方形ABCD的邊長為1,它的一邊AD在MN上,且頂點A與M重合.現(xiàn)將正方形ABCD在梯形的外面沿邊MN、NP、PQ進行翻滾,翻滾到有一個頂點與Q重合即停止?jié)L動.
(1)請在所給的圖中,用尺規(guī)畫出點A在正方形整個翻滾過程中所經(jīng)過的路線圖;
(2)求正方形在整個翻滾過程中點A所經(jīng)過的路線與梯形MNPQ的三邊MN、NP、PQ所圍成圖形的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,巳知A點坐標為(5,0),直線y=x+b(b>0)與y軸交于點B,連接AB,∠α=75°,則b的值為( )

A.3
B.
C.4
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,巳知該山坡的坡度i(即tan∠ABC)為1: ,點P,H,B,C,A在同一個平面上,點H、B、C在同一條直線上,且PH丄HC.

(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求A、B兩點間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.732).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l經(jīng)過點A(1,0),與雙曲線y= (x>0)交于點B(2,1).過點P(p,p﹣1)(p>1)作x軸的平行線分別交雙曲線y= (x>0)和y=﹣ (x<0)于點M、N.
(1)求m的值和直線l的解析式;
(2)若點P在直線y=2上,求證:△PMB∽△PNA;
(3)是否存在實數(shù)p,使得SAMN=4SAMP?若存在,請求出所有滿足條件的p的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F分別是正方形ABCD的邊BC、CD上的點,BE=CF,連接AE、BF.將△ABE繞正方形的中心按逆時針方向旋轉(zhuǎn)到△BCF,旋轉(zhuǎn)角為α( 0°<α<180°),則∠α=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y= x﹣3與反比例函數(shù) 的圖象相交于點A(4,n),與 軸相交于點B.

(1)填空:n的值為 , k的值為;
(2)以AB為邊作菱形ABCD,使點C在 軸正半軸上,點D在第一象限,求點D的坐標;
(3)考察反比函數(shù) 的圖象,當 時,請直接寫出自變量 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,BC=5cm,將△ABC沿BC方向平移至△A′B′C′的對應(yīng)位置時,A′B′恰好經(jīng)過AC的中點O,則△ABC平移的距離為cm.

查看答案和解析>>

同步練習冊答案