【題目】如圖,E,F,G,H分別是BD,BC,AC,AD的中點(diǎn),AB=CD.下列結(jié)論:EGFH,②四邊形EFGH是矩形,HF平分∠EHG,EG= (BC-AD),⑤四邊形EFGH是菱形.其中正確的是________(把所有正確結(jié)論的序號都選上).

【答案】①③⑤

【解析】試題解析:∵E,F,G,H分別是BD,BC,AC,AD的中點(diǎn),

EF=CD,FG=AB,GH=CD,HE=AB,

∵AB=CD,

∴EF=FG=GH=HE,

∴四邊形EFGH是菱形,

∴①EG⊥FH,正確;

②四邊形EFGH是矩形,錯(cuò)誤;

③HF平分∠EHG,正確;

EG= (BC-AD),只有ADBC時(shí)才可以成立,而本題ADBC很顯然不平行,故本小題錯(cuò)誤;

⑤四邊形EFGH是菱形,正確.

綜上所述,①③⑤共3個(gè)正確.

故答案為:①③⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張矩形紙片.點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點(diǎn)分別落在點(diǎn)處,

(1)若,則的度數(shù)為 °;

(2)若,的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,線段a,線段b

1)尺規(guī)作圖:作線段AM=3a,AN=b,且點(diǎn)A、M、N在一條直線上;(按要求作圖,不必寫作法)

2)求線段MN的長度;

3)若線段a=3,b=4,取線段AN的中點(diǎn)P,取線段MN的中點(diǎn)Q,直線寫出PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

14x3=﹣4;

212x)=3x+1);

31;

42

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與A,B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點(diǎn)”;如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強(qiáng)相似點(diǎn)”.

【試題再現(xiàn)】如圖②,在△ABC中,∠ACB=90°,直角頂點(diǎn)C在直線DE上,分別過點(diǎn)A,B作AD⊥DE于點(diǎn)D,BE⊥DE于點(diǎn)E.求證:△ADC∽△CEB.

【問題探究】在圖①中,若∠A=∠B=∠DEC=40°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由.

【深入探究】如圖③,AD∥BC,DP平分∠ADC,CP平分∠BCD交DP于點(diǎn)P,過點(diǎn)P作AB⊥AD于點(diǎn)A,交BC于點(diǎn)B.

(1)請證明點(diǎn)P是四邊形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn).

(2)若AD=3,BC=5,試求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD相交于點(diǎn)O,OE是∠BOD的平分線

1)∠DOE的補(bǔ)角有   

2)若∠DOE:∠AOD17,求∠AOC的度數(shù);

3)射線OFOE

①當(dāng)射線OF在直線AB上方時(shí),試探究∠BOC與∠DOF之間的數(shù)量關(guān)系,并說明理由;

②當(dāng)射線OF在直線AB下方時(shí),∠BOC與∠DOF之間的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王先生到泉州臺商投資區(qū)行政服務(wù)中心大樓辦事,假定乘電梯向上一樓記作+1,向下一樓記作﹣1,王先生從1樓出發(fā),電梯上下樓層依次記錄如下:(單位:層)

+6,﹣3,+10,﹣8,+12,﹣7,﹣10

1)請你通過計(jì)算說明王先生最后是否回到出發(fā)點(diǎn)1樓.

2)該中心大樓每層高3m,電梯每向上或下1m需要耗電0.1度,根據(jù)王先生現(xiàn)在所處位置,請你算算,他辦事時(shí)電梯需要耗電多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用圖形來表示數(shù)量或數(shù)量關(guān)系,也可以利用數(shù)量或數(shù)量關(guān)系來描述圖形特征或圖形之間的關(guān)系,這種思想方法稱為數(shù)形結(jié)合.你能利用數(shù)形結(jié)合的思想解決下列問題嗎?

(1)如圖①,一個(gè)邊長為1的正方形,依次取正方形面積的,,,…, ,根據(jù)圖示我們可以知道: ++++…+=________.(用含有n的式子表示)

(2)如圖②,一個(gè)邊長為1的正方形,依次取剩余部分的,根據(jù)圖示:

計(jì)算: +++…+=________.(用含有n的式子表示)

(3)如圖③是一個(gè)邊長為1的正方形,根據(jù)圖示:

計(jì)算: ++++…+=________.(用含有n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東昌湖舉行的健身運(yùn)動(dòng)會(huì)龍舟比賽中,甲、乙兩隊(duì)在500米的賽道上,所滑行的路程y(m)與實(shí)踐x(min)之間的函數(shù)關(guān)系如圖所示,下列說法正確的有____________.

①乙隊(duì)比甲隊(duì)提前0. 25min到達(dá)終點(diǎn).

②當(dāng)乙隊(duì)劃行110m時(shí),此時(shí)落后甲隊(duì)15m.

③0. 5min后,乙隊(duì)比甲隊(duì)每分鐘快40m.

④自1. 5min開始,甲隊(duì)若要與乙隊(duì)同時(shí)到達(dá)終點(diǎn),甲隊(duì)的速度需要提高到255m/min.

查看答案和解析>>

同步練習(xí)冊答案