【題目】在矩形中,,,是射線上的一個(gè)動(dòng)點(diǎn),作,交射線于點(diǎn),射線交射線于點(diǎn),設(shè),.
(1)如圖,當(dāng)在邊上時(shí)(點(diǎn)與點(diǎn)、都不重合),求關(guān)于的函數(shù)解析式,并寫出它的定義域;
(2)當(dāng)時(shí),求的長(zhǎng);
(3)當(dāng)時(shí),求的長(zhǎng).
【答案】(1);(2)3;(3)3或7.
【解析】
(1)P在BC上運(yùn)動(dòng)時(shí),要求y關(guān)于x的函數(shù)解析式,只需要用勾股定理表示PE2=PC2+EC2就可以使問(wèn)題到解決,而關(guān)鍵是解決PE2,又在Rt△APE中由勾股定理求得,從而解決問(wèn)題;(2)把x=3的值代入第一問(wèn)的解析式就可以求出CE的值,再利用三角形相似就可以求出CF的值;(3)由條件可以證明△ABP∽△PCE,可以得到=2,再分情況討論,從而求出BP的值.
解:(1)如圖:
∵四邊形ABCD是矩形,
∴AB=CD=4,BC=AD=5,∠B=∠BCD=∠D=90°,
∵BP=x,CE=y,
∴PC=5-x,DE=4-y,
∵AP⊥PE,
∴∠APE=90°,∠1+∠2=90°,
∵∠1+∠3=90°,
∴∠2=∠3,
∴△ABP∽△PCE,
∴
∴
∴;
(2)當(dāng)x=3時(shí),,
即CE= ,
∴DE=,
∵四邊形ABCD是矩形,
∴AD∥BF.
∴△AED∽△FEC,
∴,
∴,
∴CF=3;
(3)根據(jù)tan∠PAE=,可得:=2
由(1)可知,當(dāng)點(diǎn)P在邊BC上時(shí):△ABP∽△PCE
∴=2
于是:
解得:x=3,y=1.5
如圖,當(dāng)點(diǎn)P在BC的延長(zhǎng)線上時(shí),
同理可證:△ABP∽△PCE
此時(shí),BP=x-5
∴
解得:x=7,y=3.5.
p>∴BP=3或7.年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,點(diǎn)D在邊BC上,點(diǎn)E在線段AD上,EF⊥AC于點(diǎn)F,EG⊥EF交AB于點(diǎn)G.若EF = EG,則CD的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面圖形S,點(diǎn)P、Q是S上任意兩點(diǎn),我們把線段PQ的長(zhǎng)度的最大值稱為平面圖形S的“寬距”.例如,正方形的寬距等于它的對(duì)角線的長(zhǎng)度.
(1)寫出下列圖形的寬距:
①半徑為1的圓: ;
②如圖1,上方是半徑為1的半圓,下方是正方形的三條邊的“窗戶形“: ;
(2)如圖2,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,0)、B(1,0),C是坐標(biāo)平面內(nèi)的點(diǎn),連接AB、BC、CA所形成的圖形為S,記S的寬距為d.
①若d=2,求點(diǎn)C所在的區(qū)域的面積;
②若點(diǎn)C在⊙M上運(yùn)動(dòng),⊙M的半徑為1,圓心M在過(guò)點(diǎn)(0,2)且與y軸垂直的直線上.對(duì)于⊙M上任意點(diǎn)C,都有5≤d≤8,直接寫出圓心M的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以坐標(biāo)原點(diǎn)為圓心,1為半徑的圓分別交x,y軸的正半軸于點(diǎn)A,B.
(1)如圖一,動(dòng)點(diǎn)P從點(diǎn)A處出發(fā),沿x軸向右勻速運(yùn)動(dòng),與此同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B處出發(fā),沿圓周按順時(shí)針方向勻速運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度比點(diǎn)P的運(yùn)動(dòng)速度慢,經(jīng)過(guò)1秒后點(diǎn)P運(yùn)動(dòng)到點(diǎn)(2,0),此時(shí)PQ恰好是⊙O的切線,連接OQ.求∠QOP的大小;
(2)若點(diǎn)Q按照(1)中的方向和速度繼續(xù)運(yùn)動(dòng),點(diǎn)P停留在點(diǎn)(2,0)處不動(dòng),求點(diǎn)Q再經(jīng)過(guò)5秒后直線PQ被⊙O截得的弦長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,水平地面上有一幢高為AD的樓,樓前有坡角為30°、長(zhǎng)為6米的斜坡.已知從A點(diǎn)觀測(cè)B、C的俯角分別為60°和30°
(1)求樓高;
(2)現(xiàn)在要將一個(gè)半徑為2米的⊙O從坡底與斜坡相切時(shí)的⊙O1位置牽引滾動(dòng)到斜坡上至圓剛好與斜坡上水平面相切時(shí)的⊙O2位置,求滾動(dòng)過(guò)程中圓心O移動(dòng)的總長(zhǎng)度.(參考數(shù)據(jù):tan15°=2﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一水果店,從批發(fā)市場(chǎng)按4元千克的價(jià)格購(gòu)進(jìn)10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測(cè),每天每千克價(jià)格上漲元.
設(shè)x天后每千克蘋果的價(jià)格為p元,寫出p與x的函數(shù)關(guān)系式;
若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出y與x的函數(shù)關(guān)系式;
該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤(rùn),最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E在BC邊上,點(diǎn)F在DC的延長(zhǎng)線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),PA=PC,∠C=30°.
(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);
(3)在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,設(shè)△CMN的周長(zhǎng)為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com