13.如圖,在△ABC和△ADE中,AB=AC,∠ADE=∠AED,∠BAC+∠EAD=180°,BE,CD,F(xiàn)為BE的中點(diǎn),連接AF,當(dāng)∠BAE=90°時(shí),求證:CD=2AF.

分析 因?yàn)锳F是直角三角形ABE的中線,利用中線的性質(zhì)可得BE=2AF,然后通過證明△ABE≌△ACD即可求得.

解答 證明:∵∠BAC+∠EAD=180°,∠BAE=90°,
∴∠DAC=90°,
在△ABE與△ACD中,
$\left\{\begin{array}{l}{AE=AD}\\{∠BAE=∠CAD=90°}\\{AB=AC}\end{array}\right.$,
∴△ABE≌△ACD(SAS),
∴CD=BE,
∵在Rt△ABE中,F(xiàn)為BE的中點(diǎn),
∴BE=2AF,
∴CD=2AF.

點(diǎn)評(píng) 本題考查了三角形全等的判定和性質(zhì),等腰三角形的性質(zhì),直角三角形中線的性質(zhì)等,利用直角三角形中線的性質(zhì)是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,已知矩形OABC與矩形ODEF是位似圖形,P是位似中心,若點(diǎn)B的坐標(biāo)為(2,4),點(diǎn)E的坐標(biāo)為(-1,2),則點(diǎn)P的坐標(biāo)為(-2,0).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,?ABCD中,對(duì)角線BD⊥AB,AD=5cm,CD=4cm,動(dòng)點(diǎn)E從點(diǎn)C出發(fā),沿C-D方向以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)A出發(fā),沿A-D-B方向以2cm/s的速度運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).連接EF并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)M.設(shè)運(yùn)動(dòng)時(shí)間為t(s),解答下列問題:
(1)當(dāng)t為何值時(shí),四邊形AMDE是平行四邊形?
(2)設(shè)四邊形BCEF的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)直接寫出使△BEF是等腰三角形的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.已知,如圖,在正方形ABCD中,CE垂直于∠CAD的平分線于E,AE交DC于F,求證:CE=$\frac{1}{2}$AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,AB=5,BD=6$\sqrt{2}$,則邊BC的長(zhǎng)為(  )
A.5$\sqrt{2}$B.6C.7D.6$\sqrt{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.如圖,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,則∠DCB=66°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,△ABC中,A(1,0),B(4,0),C(0,2),將△AOC沿x軸的正半軸以每秒1個(gè)單位的速度向右平移得到△A′O′C′,設(shè)運(yùn)動(dòng)時(shí)間為t(s),△A′O′C′與△ABC重疊部分的面積為s,求s與t的函數(shù)關(guān)系式,并說明自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)y=πx;y=3-2x;y=3x;y=x2-2,其中一次函數(shù)共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.一組鄰邊相等的矩形是(  )
A.梯形B.正方形C.平行四邊形D.菱形

查看答案和解析>>

同步練習(xí)冊(cè)答案