在平面直角坐標系xOy內(nèi),拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.把直線y=-x-3沿y軸翻折后恰好經(jīng)過B、C兩點.
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,在坐標軸上是否存在這樣的點F,使得∠DFB=∠DCB?若存在,求出點F的坐標;若不存在,請說明理由.
(1)如圖,依題意,把直線y=-x-3沿y軸翻折后經(jīng)過B、C兩點,

∴點B坐標為(3,0),點C的坐標為(0,-3),
∴c=-3.
∴-9+3b-3=0.
解得b=4.
∴拋物線的解析式為y=-x2+4x-3.

(2)在坐標軸上存在這樣的點F,使得∠DFB=∠DCB.
拋物線y=-x2+4x-3的頂點D的坐標為(2,1).
設(shè)對稱軸與x軸的交點為點E,
在Rt△DEB中,DE=BE=1,
∴∠DBE=45°.
在Rt△OBC中,OB=OC=3,
∴∠OBC=45°.
∴∠DBC=90°.
在Rt△DBC中,DB=
2
,BC=3
2

tan∠DCB=
DB
BC
=
1
3

∵DE⊥x軸,DE=1,
∴在x軸上存在EF1=3,EF2=3.
∴符合題意的點的坐標為F1(-1,0)或F2(5,0)
過點D作DF3⊥y軸于F3
∴點F3的坐標為(0,1).
∵在Rt△F3BO中,tan∠F3BO=
OF3
OB
=
1
3
,
又∵DF3x軸,
∴∠DF3B=∠F3BO.
∴點F3(0,1)也是符合題意的點
綜上,符合題意的點F的坐標為(-1,0)、F2(5,0)或(0,1).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+c(a≠0)與直線y=kx+b(k≠0)相交于A(2,1)、B(1,-1)兩點,你能求出拋物線和直線的函數(shù)表達式嗎?畫出草圖.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點M在第一象限,拋物線與x軸相交于A、B兩點(點A在點B的左邊),與y軸交與點C,O為坐標原點,如果△ABM是直角三角形,AB=2,OM=
5

(1)求點M的坐標;
(2)求拋物線y=ax2+bx+c的解析式;
(3)在拋物線的對稱軸上是否存在點P,使得△PAC為直角三角形?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,開口向上的拋物線與x軸交于A、B兩點,D為拋物線的頂點,O為坐標原點.若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對應(yīng)的二次函數(shù)解析式;
(2)過點A作AC⊥AD交拋物線于點C,求點C的坐標;
(3)在(2)的條件下,過點A任作直線l交線段CD于點P,若點C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知直線y=-
3
x+
3
與x軸交于點A,與y軸交于點B,C是x軸上一點,如果∠ABC=∠ACB,
求:(1)點C的坐標;
(2)圖象經(jīng)過A、B、C三點的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè).他準備用40m長的木欄圍一個矩形的羊圈,為了節(jié)約材料同時要使矩形的面積最大,他利用了自家房屋一面長25m的墻,設(shè)計了如圖一個矩形的羊圈.
(1)請你求出張大伯矩形羊圈的面積;
(2)請你判斷他的設(shè)計方案是否合理?如果合理,直接答合理;如果不合理又該如何設(shè)計并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是一個運動員投擲鉛球的拋物線圖,解析式為y=-
1
12
x2+
2
3
x+
5
3
(單位:米),其中A點為出手點,C點為鉛球運行中的最高點,B點鉛球落地點.求:
(1)出手點A離地面的高度;
(2)最高點C離地面的高度;
(3)該運動員的成績是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

美廉客超市以30元/千克的價格購進一批新疆和田玉棗,如果以35元/千克的價格銷售,那么每天可售出300千克;如果以40元/千克的價格銷售,那么每天可售出200千克,根據(jù)銷售經(jīng)驗可以知道,每天的銷售量y(千克)與銷售單價x(元)(x≥30)存在一次函數(shù)關(guān)系.
(1)請你求出y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該超市銷售新疆和田玉棗每天獲得的利潤為w元,求當銷售單價為多少時,每天獲得的利潤最大,最大利潤是多少?
(3)如果物價局規(guī)定商品的利潤率不能高于40%,而超市希望每天銷售新疆和田玉棗的利潤不低于1500元,請你幫助超市確定這種棗的銷售單價x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-2ax+3的圖象與x軸交于點A,點B,與y軸交于點C,其頂點為D,直線DC的函數(shù)關(guān)系式為y=kx+b,又tan∠OBC=1.
(1)求二次函數(shù)的解析式和直線DC的函數(shù)關(guān)系式;
(2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案