(2010•寧波)十八世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:

(1)根據(jù)上面多面體模型,完成表格中的空格:
多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
 四面體 4 4 
 長方體 8 6 12
 正八面體  8 12
 正十二面體 20 12 30
你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關系式是______.
(2)一個多面體的面數(shù)比頂點數(shù)大8,且有30條棱,則這個多面體的面數(shù)是______.
(3)某個玻璃鉓品的外形是簡單多面體,它的外表面是由三角形和八邊形兩種多邊形拼接而成,且有24個頂點,每個頂點處都有3條棱,設該多面體外表三角形的個數(shù)為x個,八邊形的個數(shù)為y個,求x+y的值.
【答案】分析:(1)觀察可得頂點數(shù)+面數(shù)-棱數(shù)=2;
(2)代入(1)中的式子即可得到面數(shù);
(3)得到多面體的棱數(shù),求得面數(shù)即為x+y的值.
解答:解:(1)四面體的棱數(shù)為6;正八面體的頂點數(shù)為6;關系式為:V+F-E=2;
多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
 四面體 4 46
 長方體 8 6 12
 正八面體 6 8 12
 正十二面體 20 12 30
(2)由題意得:F-8+F-30=2,解得F=20;

(3)∵有24個頂點,每個頂點處都有3條棱,兩點確定一條直線;
∴共有24×3÷2=36條棱,
那么24+F-36=2,解得F=14,
∴x+y=14.
點評:本題考查多面體的頂點數(shù),面數(shù),棱數(shù)之間的關系及靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年浙江省寧波市中考數(shù)學試卷(解析版) 題型:解答題

(2010•寧波)十八世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:

(1)根據(jù)上面多面體模型,完成表格中的空格:
多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
 四面體 4 4 
 長方體 8 6 12
 正八面體  8 12
 正十二面體 20 12 30
你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關系式是______.
(2)一個多面體的面數(shù)比頂點數(shù)大8,且有30條棱,則這個多面體的面數(shù)是______.
(3)某個玻璃鉓品的外形是簡單多面體,它的外表面是由三角形和八邊形兩種多邊形拼接而成,且有24個頂點,每個頂點處都有3條棱,設該多面體外表三角形的個數(shù)為x個,八邊形的個數(shù)為y個,求x+y的值.

查看答案和解析>>

同步練習冊答案