【題目】如圖,輪船在A處觀測燈塔C位于北偏東70o方向上,輪船從A處以每小時30海里的速度沿南偏東50o方向勻速航行,1小時后到達碼頭B處,此時觀測燈塔C位于北偏東25o方向上,求燈塔C與碼頭B之間的距離(結(jié)果保留根號).

【答案】燈塔C與碼頭B之間的距離為海里.

【解析】

BDAC于點D,在直角ABD中,利用三角函數(shù)求得BD的長,然后在直角BCD中,利用三角函數(shù)即可求得BC的長.

過點BBDAC,交AC于點D

由題可知AB30海里,∠DAB60°,∠C45°

RtABD中,∵sinDAB

sin60°

BD海里

RtBCD中,∵sinC,

sin45°

BC海里

答:燈塔C與碼頭B之間的距離為海里.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師要求在一個已知的中,利用尺規(guī)作出一個菱形.

1)小明的作法如下:如圖1,連接,作的垂直平分線分別交于點,,連接,.請你判斷小明的作法是否正確;若正確,說明理由;若不正確,請你作出符合條件的菱形;

2)小亮的作法:如圖2,分別作,的平分線,,分別交,于點,,連接,則四邊形是菱形.請你直接判斷小亮的作法是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市促銷活動,將AB,C三種水果采用甲、乙、丙三種方式搭配裝進禮盒進行銷售.每盒的總成本為盒中AB,C三種水果成本之和,盒子成本忽略不計.甲種方式每盒分別裝A,B,C三種水果6kg3kg,1kg;乙種方式每盒分別裝A,BC三種水果2kg,6kg2kg.甲每盒的總成本是每千克A水果成本的12.5倍,每盒甲的銷售利潤率為20%;每盒甲比每盒乙的售價低25%;每盒丙在成本上提高40%標(biāo)價后打八折出售,獲利為每千克A水果成本的1.2倍.當(dāng)銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為225時,則銷售總利潤率為_____.(利潤率=利潤÷成本×100%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,∠B60°,BC2.將ABC繞點C順時針旋轉(zhuǎn),得到ABC,連接AB,且A,B,A在同一條直線上,則AA_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,⊙O1x軸相切于點A(﹣3,0),與y軸相交于B、C兩點,且BC8,連接AB

1)求證:∠ABO1=∠ABO;

2)求AB的長;

3)如圖2,⊙O2經(jīng)過A、B兩點,與y軸的正半軸交于點M,與O1B的延長線交于點N,求出BMBN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線過點(1,0)和點(0,-3),且頂點在第三象限,設(shè)mabc,則m的取值范圍是(

A.6m0B.6m<-3C.3m0D.3m<-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與x軸交于A、B兩點(A在點B左側(cè)),與y軸交于點C.

(1)求線段BC的長;

(2)當(dāng)0≤y≤3時,請直接寫出x的范圍;

(3)P是拋物線上位于第一象限的一個動點,連接CP,當(dāng)∠BCP90o時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點C逆時針旋轉(zhuǎn)得到ABC,MBC的中點,PAB的中點,連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用函數(shù)圖象探究方程x|x|2)=的實數(shù)根的個數(shù).

1)設(shè)函數(shù)yx|x|2),則這個函數(shù)的圖象與直線y的交點的橫坐標(biāo)就是方程x|x|2)=的實數(shù)根.

2)分類討論:當(dāng)x≤0時,y=﹣x22x;當(dāng)x0時,y   

3)在給定的坐標(biāo)系中,已經(jīng)畫出了當(dāng)x≤0時的函數(shù)圖象,請根據(jù)(2)中的解析式,通過描點,連線,畫出當(dāng)x0時的函數(shù)圖象.

4)在給定的坐標(biāo)系中畫直線y、觀察圖象可知方程x|x|2)=的實數(shù)根有   個.

5)深入探究:若關(guān)于x的方程2x|x|2)=m有三個不相等的實數(shù)根,且這三個實數(shù)根的和為負數(shù),則m的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案