【題目】如圖,在Rt△ABC中,∠ACB=90,AC=3,BC=4,分別以AB、AC、BC為邊在AB同側(cè)作正方形ABEF,ACPQ,BDMC,記四塊陰影部分的面積分別為S1、S2、S3、S4 , 則S1+S2+S3+S4= .
【答案】18
【解析】解:過F作AM的垂線交AM于N, 則Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,
所以S2=SRt△ABC .
由Rt△NFK≌Rt△CAT可得:Rt△FPT≌Rt△EMK,
∴S3=S△FPT ,
可得Rt△AQF≌Rt△ACB,
∴S1+S3=SRt△AQF=SRt△ABC .
∵Rt△ABC≌Rt△EBD,
∴S4=SRt△ABC
∴S1+S2+S3+S4
=(S1+S3)+S2+S4
=SRt△ABC+SRt△ABC+SRt△ABC
=SRt△ABC×3
=4×3÷2×3
=18.
所以答案是:18.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,D,E三點(diǎn)共線,C,B,F三點(diǎn)共線,AB=CD,AD=CB,DE=BF,那么BE與DF之間有什么數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊BC與x軸重合,連接對角線BD交y軸于點(diǎn)E,過點(diǎn)A作AG⊥BD于點(diǎn)G,直線GF交AD于點(diǎn)F,AB、OC的長分別是一元二次方程x-5x+6=0的兩根(AB>OC),且tan∠ADB=.
(1)求點(diǎn)E、點(diǎn)G的坐標(biāo);
(2)直線GF分△AGD為△AGF與△DGF兩個(gè)三角形,且S△AGF:S△DGF =3:1,求直線GF的解析式;
(3)點(diǎn)P在y軸上,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)Q,使以點(diǎn)B、D、P、Q為頂點(diǎn)的四邊形是矩形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車公司調(diào)查陽光中學(xué)學(xué)生對其產(chǎn)品的了解情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
(1)本次問卷共隨機(jī)調(diào)查了名學(xué)生,扇形統(tǒng)計(jì)圖中m= .
(2)請根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該校有1000名學(xué)生,估計(jì)選擇“非常了解”、“比較了解”共約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】幾位同學(xué)拍了一張合影,已知沖洗一張底片需要0.8元,洗一張相片需要0.4元,現(xiàn)在沖洗了一張底片,然后給每個(gè)人洗了一張相片,平均每人分?jǐn)偟腻X不足0.6元,則參加合影的同學(xué)人數(shù)( 。
A. 至少4人B. 至多4人C. 至少5人D. 至多5人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OA⊥射線OB,半徑的動(dòng)圓M與OB相切于點(diǎn)Q,( 圓M 與OA沒有公共點(diǎn) ), P是OA上的動(dòng)點(diǎn),且PM.設(shè)OP= ,OQ= .
(1)求、所滿足的關(guān)系式,并寫出的取值范圍 ;
(2)當(dāng)△MOP為等腰三角形時(shí),求相應(yīng)的值;
(3)是否存在大于2的實(shí)數(shù),使△MQO∽△OMP?若存在,求相應(yīng)的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在直線l上(F,C之間不能直接測量),點(diǎn)A,D在l異側(cè),測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com