【題目】近期,某國遭遇了近年來最大的經(jīng)濟危機,導致該國股市大幅震蕩,昨天某支股票累計賣出的數(shù)量和交易時間之間的關(guān)系如圖中虛線所示,累計買入的數(shù)量和交易時間之間的關(guān)系如圖中實線所示,其中點A是實線和虛線的交點,點CBE的中點,CD與橫軸平行,則下列關(guān)于昨天該股票描述正確的是( 。

A.交易時間在3.5h時累計賣出的數(shù)量為12萬手

B.交易時間在1.4h時累計賣出和累計買入的數(shù)量相等

C.累計賣出的數(shù)量和累計買入的數(shù)量相差1萬手的時刻有5

D.從點A對應的時刻到點C對應的時刻,平均每小時累計賣出的數(shù)量小于買入的數(shù)量

【答案】D

【解析】

由中點坐標公式可求點C坐標,可得交易時間在3.5h時累計賣出的數(shù)量為12.5萬手,可判斷選項A;利用待定系數(shù)法可求ACOB解析式,可求點B坐標,可得交易時間在1.5h時累計賣出和累計買入的數(shù)量相等,可判斷選項B;由圖象可得累計賣出的數(shù)量和累計買入的數(shù)量相差1萬手的時刻有4個,可判斷選項C;由圖象可得從點A對應的時刻到點C對應的時刻,實線在虛線的上方,即平均每小時累計賣出的數(shù)量小于買入的數(shù)量,可判斷選項D,即可求解.

∵點B3,5),點E4,20),點CBE的中點,

∴點C,),

∴交易時間在3.5h時累計賣出的數(shù)量為12.5萬手,故A選項不合題意;

∵直線OB過點(0,0),點B3,5),

∴直線OB解析式為:yx,

∵直線AC過點(10),點C),

∴直線AC解析式為:y5x5,

聯(lián)立方程組可得,

∴交易時間在1.5h時累計賣出和累計買入的數(shù)量相等,故B選項不合題意;

由圖象可得累計賣出的數(shù)量和累計買入的數(shù)量相差1萬手的時刻有4個,故C選項不合題意,

由圖象可得從點A對應的時刻到點C對應的時刻,實線在虛線的上方,即平均每小時累計賣出的數(shù)量小于買入的數(shù)量,故D選項符合題意,

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中放有三張卡片,每張卡片上寫有1個實數(shù),分別為1,2,3.(卡片除了實數(shù)不同外,其余均相同)

1)從盒子中隨機抽取一張卡片,請直接寫出卡片上的實數(shù)是2的概率_______

2)先從盒子中隨機抽取一張卡片,將卡片上的實數(shù)作為點P的橫坐標,卡片不放回,再隨機抽取一張卡片,將卡片上的實數(shù)作為點P的縱坐標,兩次抽取的卡片上的實數(shù)分別作為點P的橫縱坐標.請你用列表法或樹狀圖法,求出點P在反比例函數(shù)上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形中,的中點,一塊足夠大的三角板的直角頂點與點重合,將三角板繞點旋轉(zhuǎn),三角板的兩直角邊分別交或它們的延長線)于點,設,下列四個結(jié)論:①;②; ;④,正確的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,對稱軸為直線x2,與x軸的一個交點(﹣1,0),則下列結(jié)論正確的個數(shù)是( 。

x<﹣1x5時,y0;②a+b+c0;x2時,yx的增大而增大;④abc0

A.3B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過原點的直線y1mxm0)與反比例函數(shù)y2 k0)的圖象交于AB兩點,點A在第二象限,且點A的橫坐標為﹣1,點Dx軸負半軸上,連接AD交反比例函數(shù)圖象于另一點EAC為∠BAD的平分線,過點BAC的垂線,垂足為C,連接CE,若AD2DE,△AEC的面積為

1)根據(jù)圖象回答:當x取何值時,y1y2;

2)求△AOD的面積;

3)若點P的坐標為(m,k),在y軸的軸上是否存在一點M,使得△OMP是直角三角形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,MN、P在第二象限,橫坐標分別是﹣4、﹣2、﹣1,雙曲線yM、N、P三點,且MNNP

1)求雙曲線的解析式;

2)過P點的直線lx軸于A,交y軸于B,且PA4AB,且交y于另一點Q,求Q點坐標;

3)以PN為邊(順時針方向)作正方形PNEF,平移正方形使N落在x軸上,點P、E對應的點P′、E'正好落在反比例函數(shù)y上,求F對應點F′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】時代中學從學生興趣出發(fā),實施體育活動課走班制.為了了解學生最喜歡的一種球類運動,以便合理安排活動場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運動的1200名學生中,隨機抽取了若干名學生進行調(diào)查(每人只能在這五種球類運動中選擇一種).調(diào)查結(jié)果統(tǒng)計如下:

球類名稱

乒乓球

羽毛球

排球

籃球

足球

人數(shù)

42

15

33

解答下列問題:

(1)這次抽樣調(diào)查中的樣本是________;

(2)統(tǒng)計表中,________,________;

(3)試估計上述1200名學生中最喜歡乒乓球運動的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長相同的小正方形組成的網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點P,則tan∠APD的值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲騎自行車從A地出發(fā)前往B地,同時乙步行從B地出發(fā)前往A地,如圖的折線OPQ和線段EF,分別表示甲、乙兩人與A地的距離y、y與他們所行時間x(h)之間的函數(shù)關(guān)系.

(1)求線段OP對應的yx的函數(shù)關(guān)系式并注明自變量x的取值范圍;

(2)yx的函數(shù)關(guān)系式以及乙到達A地所用的時間;

(3)經(jīng)過   小時,甲、乙兩人相距2km

查看答案和解析>>

同步練習冊答案