【題目】如圖,在平行四邊形ABCD中,AB=4,∠ABC=60°,點(diǎn)EBC上的一點(diǎn),點(diǎn)FG分別為DE,AD的中點(diǎn),則GF長(zhǎng)的最小值為________________。

【答案】

【解析】

根據(jù)G、F分別為AD和DE的中點(diǎn),欲使GF最小,則只要使AE為最短,即AE必為△ABC中BC邊上的高,再利用三角形的中位線求解即可.

解:∵G、F分別為AD和DE的中點(diǎn),∴線段GF為△ADE的邊AD及DE上的中位線,∴GF=AE,欲使GF最小,則只要使AE為最短,∴AE必為△ABC中BC邊上的高,∵四邊形ABCD為一平行四邊形且AB=4、∠ABC=60°,作AE⊥BC于E,E為垂足,∴∠BAE=30°,∴BE=2, ∴AE=,∴GF=AE=.故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)夢(mèng)是中華民族每個(gè)人的夢(mèng),也是每個(gè)中小學(xué)生的夢(mèng).各中小學(xué)開展經(jīng)典誦讀活動(dòng),無疑是中國(guó)夢(mèng)教育這一宏大樂章里的響亮音符.某中學(xué)在全校800名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,調(diào)查內(nèi)容分為四種::非常喜歡,:喜歡,:一般,:不喜歡

被調(diào)查的同學(xué)只能選取其中的一種.根據(jù)調(diào)查結(jié)果,繪制出兩個(gè)不完整的統(tǒng)計(jì)圖(圖形如下),并根據(jù)圖中信息,回答下列問題:

1)本次調(diào)查中,一共調(diào)查了多少名學(xué)生?

2)條形統(tǒng)計(jì)圖中,_________,_____________

3)在扇形統(tǒng)計(jì)圖中,:喜歡所在扇形的圓心角的度數(shù)是多少?

4)請(qǐng)估計(jì)該學(xué)校800名學(xué)生中:非常喜歡:喜歡經(jīng)典誦讀的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潮州旅游文化節(jié)開幕前,某鳳凰茶葉公司預(yù)測(cè)今年鳳凰茶葉能夠暢銷,就用32000元購(gòu)進(jìn)了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購(gòu)進(jìn)第二批鳳凰茶葉,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每千克鳳凰茶葉進(jìn)價(jià)多了10元.

(1)該鳳凰茶葉公司兩次共購(gòu)進(jìn)這種鳳凰茶葉多少千克?

(2)如果這兩批茶葉每千克的售價(jià)相同,且全部售完后總利潤(rùn)率不低于20%,那么每千克售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別是(-3,0),(0,6),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)C從點(diǎn)B出發(fā),沿射線BO方向以每秒2個(gè)單位的速度運(yùn)動(dòng).以CP,CO為鄰邊構(gòu)造PCOD.在線段OP延長(zhǎng)線上一動(dòng)點(diǎn)E,且滿足PEAO.

(1)當(dāng)點(diǎn)C在線段OB上運(yùn)動(dòng)時(shí),求證:四邊形ADEC為平行四邊形;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為秒時(shí),求此時(shí)四邊形ADEC的周長(zhǎng)是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】明明家與學(xué)校的圖書館和食堂在同一條直線上,食堂在家和圖書館之間。一天明明先去食堂吃了早餐,接著去圖書館看了一會(huì)書,然后回家。如圖反應(yīng)了這個(gè)過程中明明離家的距離y與時(shí)間x之間的對(duì)應(yīng)關(guān)系,下列結(jié)論:①明明從家到食堂的平均速度為0.075km/min;②食堂離圖書館0.2km;③明明看書用了30min;④明明從圖書館回家的平均速度是0.08km/min,其中正確的個(gè)數(shù)是( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ACD,∠ACD=90°AC=,分別以邊ADAC,CD為直徑面半圖,所得兩個(gè)月形圖案AGCEDHCF的面積之和(圖中陰影部分)_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的對(duì)稱軸是直線x=2,且經(jīng)過點(diǎn)(1,4)和點(diǎn)(5,0),求這個(gè)函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD為平行四邊形,AEBDE,CFBDF

(1)求證:BEDF

(2)若M、N分別為邊ADBC上的點(diǎn),且DM=BN,試猜想四邊形MENF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案