【題目】閱讀下列材料,解決問題:

我們把一個能被17整除的自然數(shù)稱為節(jié)儉數(shù)”,“節(jié)儉數(shù)的特征是:若把一個自然數(shù)的個位數(shù)字截去,再把剩下的數(shù)減去截去的那個個位數(shù)字的5倍,如果差是17的整數(shù)倍(包括0),則原數(shù)能被17整除.如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的截尾、倍大、相減、驗差的過程,直到能清楚判斷為止.

例如:判斷1675282是不是節(jié)儉數(shù).判斷過程:167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到這里如果你仍然觀察不出來,就繼續(xù)13﹣6×5=﹣17,﹣1717的整數(shù)倍,所以1675282能被17整除.所以1675282節(jié)儉數(shù)”.

(1)請用上述方法判斷72592098752 是否是節(jié)儉數(shù),并說明理由;

(2)一個五位節(jié)儉數(shù),其中個位上的數(shù)字為b,十位上的數(shù)字為a,請求出這個數(shù).

【答案】(1)7259節(jié)儉數(shù)”; 2098752不是節(jié)儉數(shù)”;(2)1234212393.

【解析】

(1)模仿例題解決問題即可;

(2)由51×242=12342,51×243=12393,可得結(jié)論.

(1)725﹣9×5=680,68﹣0×5=68,68÷17=4,

所以7259能被17整除,是節(jié)儉數(shù)”;

209875﹣2×5=209865,20986﹣5×5=20961,2096﹣1×5=2091,209﹣1×5=204,204÷17=12,

所以2098752不能被17整除,不是節(jié)儉數(shù)”;

(2)51×242=12342,51×243=12393,

∴這個數(shù)是1234212393.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD,∠B=90°,AB∥ED ,BCE,交 ACF, DE = BC,.

(1) 求證:△FCD 是等腰三角形

(2) AB=3.5cm,CD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是線段AB上除點A、B外的任意一點,分別以ACBC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AEDCM,連接BDCEN,連接MN

1)求證:AEBD;

2)請判斷△CMN的形狀,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是中線,EAD的中點,過點AAFBCBE的延長線于點F,連接CF

1)求證:ADCF;

2)如果ABAC,四邊形ADCF的形狀為   (直接寫出結(jié)果);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的頂點O是坐標(biāo)原點,邊OAOC分別在x軸、y軸上,點B的坐標(biāo)為(44).直線l經(jīng)過點C

1)若直線l與邊OA交于點M,過點A作直線l的垂線,垂足為D,交y軸于點E

如圖1,當(dāng)OE1時,求直線l對應(yīng)的函數(shù)表達(dá)式;

如圖2,連接OD,求證:OD平分∠CDE

2)如圖3,若直線l與邊AB交于點P,且SBCPS四邊形AOCP,此時,在x軸上是否存在點Q,使△CPQ是以CP為直角邊的直角三角形?若存在,求點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點為等邊三角形內(nèi)一點,連接,,,以為一邊作,且,連接、.

(1)判斷的大小關(guān)系并證明;

(2)若,,,判斷的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.

(1)問題發(fā)現(xiàn)

當(dāng)θ=0°時,= ;

當(dāng)θ=180°時,=

(2)拓展探究

試判斷:當(dāng)0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;

(3)問題解決

在旋轉(zhuǎn)過程中,BE的最大值為 ;

當(dāng)ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過頂點A(m,2)和CD邊上的點E(n,),過點E的直線l交x軸于點F,交y軸于點G(0,-2),則點F的坐標(biāo)是(  )

A. (,0)B. (,0)C. (,0)D. (,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于AB兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A1,0),C0,2).

1)求拋物線的表達(dá)式;

2)在拋物線的對稱軸上是否存在點P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;

3)點E時線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案