【題目】如圖所示,已知C是∠AOB的平分線上一點(diǎn),點(diǎn)P,P′分別在邊OA,OB上,如果要得到OP=OP′,需要添加以下條件中的某一個,那么所有可能結(jié)果的序號為________.
①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.
【答案】①②④
【解析】
由射線OC上的任意一點(diǎn)到∠AOB的兩邊的距離都相等,根據(jù)角平分線的判定定理可知OC平分∠AOB .要得到OP=O P′,就要讓△OCP≌△OCP′,①②④都行,只有③PC=P′C 不行,因?yàn)樽C明三角形全等沒有邊邊角定理.
①若①∠OCP=∠OCP′,根據(jù)ASA定理可求出△OCP≌△OCP′,由三角形全等的性質(zhì)可知OP=O P′.正確;
②若∠OPC=∠OP′C,根據(jù)AAS定理可得△OCP≌△OCP′,由三角形全等的性質(zhì)可知OP=O P′.正確;
③若PC=P′C 條件不能得出.錯誤;
④若PP′⊥OC ,根據(jù)ASA定理可求出△OPD≌△,由三角形全等的性質(zhì)可知OP=O P′.正確.
故答案為①②④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)將一張矩形ABCD的紙片一角折疊,若能使點(diǎn)D落在AB邊上F處,折痕為CE,恰好∠AEF=60°,延長EF交CB的延長線于點(diǎn)G.
(1)求證:△CEG是等邊三角形;
(2)若矩形的一邊AD=3,求另一邊AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若四邊形ABCD、四邊形GFED都是正方形,AD=4, ,當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖的位置,點(diǎn)F在邊AD上,延長CE交AG于H,交AD于M.則CM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(根據(jù)市教委提出的學(xué)生每天體育鍛煉不少于1小時的要求,為確保陽光體育運(yùn)動時間得到落實(shí),某校對九年級學(xué)生每天參加體育鍛煉的時間作了一次抽樣調(diào)查,其中部分結(jié)果記錄如下:
時間分組(小時) | 頻數(shù)(人數(shù)) | 頻率 |
0≤t<0.5 | 10 | 0.2 |
0.5≤t<1 | 0.4 | |
1≤t<1.5 | 10 | 0.2 |
1.5≤t<2 | 0.1 | |
2≤t<2.5 | 5 | |
合計 | 1 |
請你將頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,有下列說法:
①拋物線與y軸的交點(diǎn)為(0,6);
②拋物線的對稱軸是x=1;
③拋物線與x軸有兩個交點(diǎn),它們之間的距離是 ;
④在對稱軸左側(cè)y隨x增大而增大.
其中正確的說法是( )
A.①②③
B.②③④
C.②③
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=84°.
(1)試求作一點(diǎn)P,使得點(diǎn)P到B、C兩點(diǎn)的距離相等,并且到AC、BC兩邊的距離也相等(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)在(1)的條件下,若∠ABP=15°,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)完“證明(二)”一章后,老師布置了一道思考題:如圖,點(diǎn)M、N分別在正三角形ABC的邊BC.CA上,且BM=CN,AM、BN交于點(diǎn)Q。求證:∠BQM=60°。
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點(diǎn)M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點(diǎn)M,N分別在正三角形ABC的BC、CA邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?對②,③進(jìn)行證明。(自己畫出對應(yīng)的圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線交BC于D,AC邊的垂直平分線交BC于E, 與相交于點(diǎn)O,△ADE的周長為6cm.
(1)求BC的長;
(2)分別連結(jié)OA、OB、OC,若△OBC的周長為16cm,求OA的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓, ,點(diǎn)D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com