【題目】如圖,在四邊形ABCD中,AB=AD,∠C=90°,以AB為直徑的⊙O交AD于點E,CD=ED,連接BD交⊙O于點F.
(1)求證:BC與⊙O相切;
(2)若BD=10,AB=13,求AE的長.
【答案】(1)見解析;(2)
【解析】分析:(1)連接BE,可證明Rt△BCD≌Rt△BED,結(jié)合條件可證明∠BDC=∠ABD,可證得AB∥CD,最后看單詞結(jié)果;(2)連接EF,根據(jù)圓周角定理得出∠AFB=90°,在Rt△ABF中根據(jù)勾股定理得出BF=5,然后由Rt△ABF∽Rt△BDC,ED= ,從而求出AE的長.
詳解:(1)證明:連接BE.
∵ AB是直徑,
∴∠AEB=90°.
在Rt△BCD和Rt△BED 中
∴Rt△BCD≌Rt△BED.
∴∠ADB=∠BDC.
又 AD=AB,
∴∠ADB=∠ABD.
∴∠BDC=∠ABD.
∴AB∥CD.
∴∠ABC+∠C=180°.
∴∠ABC=180°-∠C=180°―90°=90°.
即BC⊥AB.
又B在⊙O上,
∴BD與⊙O相切.
(2)解:連接AF.
∵AB是直徑,
∴∠AFB=90°,即AF⊥BD.
∵AD=AB,BC=10,
∴BF=5.
在Rt△ABF和Rt△BDC中
∴Rt△ABF∽Rt△BDC.
∴=.
∴=.
∴DC=.
∴ED=.
∴AE=AD―ED=13―=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】整頓藥品市場、降低藥品價格是國家的惠民政策之一.根據(jù)國家《藥品政府定價辦法》,某省有關(guān)部門規(guī)定:市場流通藥品的零售價格不得超過進價的15%.根據(jù)相關(guān)信息解決下列問題:
(1)降價前,甲乙兩種藥品每盒的出廠價格之和為6.6元.經(jīng)過若干中間環(huán)節(jié),甲種藥品每盒的零售價格比出廠價格的5倍少2.2元,乙種藥品每盒的零售價格是出廠價格的6倍,兩種藥品每盒的零售價格之和為33.8元.那么降價前甲、乙兩種藥品每盒的零售價格分別是多少元?
(2)降價后,某藥品經(jīng)銷商將上述的甲、乙兩種藥品分別以每盒8元和5元的價格銷售給醫(yī)院,醫(yī)院根據(jù)實際情況決定:對甲種藥品每盒加價15%、對乙種藥品每盒加價10%后零售給患者.實際進藥時,這兩種藥品均以每10盒為1箱進行包裝.近期該醫(yī)院準備從經(jīng)銷商處購進甲乙兩種藥品共100箱,其中乙種藥品不少于40箱,銷售這批藥品的總利潤不低于900元.請問購進時有哪幾種搭配方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡求值:
(1)4-[6-2(4-2)-]+1,其中=- y =1.
(2)已知(a+2)2+|b-3|=0,求(9ab2-3)+(7a2b-2)+2(ab2+1)-2a2b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織九年級學(xué)生參加漢字聽寫大賽,并隨機抽取部分學(xué)生成績作為樣本進行分析,繪制成如下的統(tǒng)計表:
請根據(jù)所給信息,解答下列問題:
(1)a=__________,b=__________;
(2)請補全頻數(shù)分布直方圖;
(3)已知該年級有400名學(xué)生參加這次比賽,若成績在90分以上(含90分)的為優(yōu),估計該年級成績?yōu)閮?yōu)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲樓AB高20 m,乙樓CD高10 m,兩棟樓之間的水平距離BD=20 m,小麗在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求電視塔的高度EF.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.4,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校2400名學(xué)生到校上學(xué)的方式,在全校隨機抽取了若干名學(xué)生進行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項,且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).
(1)這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)補全頻數(shù)分布直方圖;
(3)估計全校所有學(xué)生中有多少人乘坐公交車上學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對角線BD于點E,點F是BC的中點,連接EF.
(1)試判斷EF與⊙O的位置關(guān)系,并說明理由.
(2)若DC=2,EF=,點P是⊙O上不與E、C重合的任意一點,則∠EPC的度數(shù)為 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個含45°角的直角三角尺BEF和個正方形ABCD擺放在起,使三角尺的直角頂點和正方形的頂點B重合,連接DF,DE,M,N分別為DF,EF的中點,連接MA,MN,下列結(jié)論錯誤的是( 。
A. ∠ADF=∠CDEB. △DEF為等邊三角形
C. AM=MND. AM⊥MN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:(1)所有的等腰三角形都相似;(2)所有的等腰直角三角形都相似;(3)有一個角相等的兩個等腰三角形相似(4)頂角相等的兩個等腰三角形相似.
其中正確的有( )
A. 個B. 個C. 個D. 個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com