)如圖所示,在⊙O中,,弦AB與弦AC交于點(diǎn)A,弦CD與AB交于點(diǎn)F,連 接BC.
(1)求證:AC2=AB•AF;
(2)若⊙O的半徑長(zhǎng)為2cm,∠B=60°,求圖中陰影部分面積.
(1)證明見(jiàn)解析;(2)cm2

試題分析:(1)由 ,利用等弧所對(duì)的圓周角相等得到一對(duì)角相等,再由一對(duì)公共角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似可得出△ACF與△ABC相似,根據(jù)相似得比例可得證;
(2)連接OA,OC,利用同弧所對(duì)的圓心角等于圓周角的2倍,由∠B為60°,求出∠AOC為120°,過(guò)O作OE垂直于AC,垂足為點(diǎn)E,由OA=OC,利用三線合一得到OE為角平分線,可得出∠AOE為60°,在Rt△AOE中,由OA及cos60°的值,利用銳角三角函數(shù)定義求出OE的長(zhǎng),在Rt△AOE中,利用勾股定理求出AE的長(zhǎng),進(jìn)而求出AC的長(zhǎng),由扇形AOC的面積-△AOC的面積表示出陰影部分的面積,利用扇形的面積公式及三角形的面積公式即可求出陰影部分的面積.
(1)證明:∵,
∴∠ACD=∠ABC,又∠BAC=∠CAF,
∴△ACF∽△ABC,
,即AC2=AB•AF;
(2)解:連接OA,OC,過(guò)O作OE⊥AC,垂足為點(diǎn)E,

∵∠ABC=60°,
∴∠AOC=120°,
又OA=OC,  
∴∠AOE=∠COE=×120°=60°,
在Rt△AOE中,OA=2cm,
∴OE=OAcos60°=1cm,
∴AE=cm,
∴AC=2AE=2cm,
則S陰影=S扇形OAC﹣SAOC=cm2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABO中,OA=OB,C是邊AB的中點(diǎn),以O(shè)為圓心的圓過(guò)點(diǎn)C.
(1)求證:AB與⊙O相切;
(2)若∠AOB=120°,AB=,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖△ABC中,AB=AC,AE⊥BC,E為垂足,F(xiàn)為AB上一點(diǎn).以BF為直徑的圓與AE相切于M點(diǎn),交BC于G點(diǎn).
(1)求證:BM平分∠ABC;
(2)當(dāng)BC=4,cosC=時(shí),
①求⊙O的半徑;
②求圖中陰影部分的面積.(結(jié)果保留π與根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在線段BC、CD上有動(dòng)點(diǎn)F、E,點(diǎn)F以每秒2cm的速度,在線段BC上從點(diǎn)B向點(diǎn)C勻速運(yùn)動(dòng);同時(shí)點(diǎn)E以每秒1cm的速度,在線段CD上從點(diǎn)C向點(diǎn)D勻速運(yùn)動(dòng).當(dāng)點(diǎn)F到達(dá)點(diǎn)C時(shí),點(diǎn)E同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間為t(秒).
(1)求AD的長(zhǎng);
(2)設(shè)四邊形BFED的面積為y,求y 關(guān)于t的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍
(3)當(dāng)t為何的值時(shí),以EE為半徑的⊙F與CD邊只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

△ABC中,∠C=90°,點(diǎn)D在邊AB上,AD=AC=7,BD=BC.動(dòng)點(diǎn)M從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CA向點(diǎn)A運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),以每秒2個(gè)單位的速度沿DA向點(diǎn)A運(yùn)動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)A時(shí),點(diǎn)M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)M、N運(yùn)動(dòng)的時(shí)間為t秒.
⑴ 求cosA的值.
⑵ 當(dāng)以MN為直徑的圓與△ABC一邊相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知⊙的半徑為1cm,⊙的半徑為3cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是(  )
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一幾何體的三視圖如圖所示,其中正視圖與左視圖是兩個(gè)全等的等腰三角形,俯視圖是圓,則該幾何體的側(cè)面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若兩圓外切,半徑分別為4和7,則它們的圓心距是(  ) 
A.2B.3C.6D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,CD是⊙O的直徑,弦AB⊥CD于點(diǎn)G,直線EF與⊙O相切于點(diǎn)D,則下列結(jié)論中不一定正確的是(  )
A.AG="BG" B.AB∥EF C.AD∥BC D.∠ABC=∠ADC

查看答案和解析>>

同步練習(xí)冊(cè)答案