游泳池常需進行換水清洗,圖中的折線表示的是游泳池?fù)Q水清洗過程“排水——清洗——灌水”中水量y(m3)與時間t(min)之間的函數(shù)關(guān)系式.

(1)根據(jù)圖中提供的信息,求整個換水清洗過程水量y(m3)與時間t(min)的函數(shù)解析式;
(2)問:排水、清洗、灌水各花多少時間?

(1)y=10t-950  (2)排水時間為75分鐘;清洗時間20分鐘;灌水所用時間150分鐘

解析解:(1)排水階段:設(shè)解析式為:y=kt+b,
圖象經(jīng)過(0,1500),(25,1000),則:

解得:k=-20,b=1500,
故排水階段解析式為:y=-20t+1500;
清洗階段:y=0,
灌水階段:設(shè)解析式為:y=at+c,
圖象經(jīng)過(195,1000),(95,0),則:

解得:a=10,c=-950,
灌水階段解析式為:y=10t-950;
(2)∵排水階段解析式為:y=-20t+1500;
∴y=0時,0=-20t+1500,
解得:t=75,
則排水時間為75分鐘,
清洗時間為:95-75=20(分鐘),
∵根據(jù)圖象可以得出游泳池蓄水量為1500(m3),
∴1500=10t-950,
解得:t=245,
故灌水所用時間為:245-95=150(分鐘).
答:排水時間為75分鐘;清洗時間20分鐘;灌水所用時間150分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,在矩形 ABCD中,AB=10cm,BC=8cm.點P從A出發(fā),沿A→B→C→D路線運動,到D停止;點Q從D出發(fā),沿 D→C→B→A路線運動,到A停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,a秒時點P、點Q同時改變速度,點P的速度變?yōu)槊棵隻cm,點Q的速度變?yōu)槊棵雂cm.圖②是點P出發(fā)x秒后△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;圖③是點Q出發(fā)x秒后△AQD的面積S2(cm2)與x(秒)的函數(shù)關(guān)系圖象.

(1)參照圖象,求b、圖②中c及d的值;
(2)連接PQ,當(dāng)PQ平分矩形ABCD的面積時,運動時間x的值為         ;
(3)當(dāng)兩點改變速度后,設(shè)點P、Q在運動線路上相距的路程為y(cm),求y(cm)與運動時間x(秒)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(4)若點P、點Q在運動路線上相距的路程為25cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,是一張放在平面直角坐標(biāo)系中的矩形紙片,為原點,點軸的正半軸上,,在上取一點,將紙片沿翻折,使點落在邊上的點處,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一農(nóng)民帶了若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售, 售出土豆千克數(shù)與他手中持有的錢(含備用零錢)的關(guān)系如圖所示,結(jié)合圖象回答下列問題:

(1) 農(nóng)民自帶的零錢是多少?
(2) 降價前他每千克土豆出售的價格是多少?
(3) 降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢) 是26元,問他一共帶了多少千克土豆.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2的圖象相交于點A(2,3)和點B,與x軸相交于點C(8,0).

(1)求這兩個函數(shù)的解析式;
(2)當(dāng)x取何值時,y1>y2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,梯形ABCD中,AB∥CD,AB=14,AD= 4,CD=7.直線l經(jīng)過A,D兩點,且sin∠DAB=.動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點P作PM垂直于AB,與折線A→D→C相交于點M,當(dāng)P,Q兩點中有一點到達(dá)終點時,另一點也隨之停止運動.設(shè)點P,Q運動的時間為t秒(t>0),△MPQ的面積為S.

(1)求腰BC的長;
(2)當(dāng)Q在BC上運動時,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;
(4)隨著P,Q兩點的運動,當(dāng)點M在線段DC上運動時,設(shè)PM的延長線與直線l相交于點N,試探究:當(dāng)t為何值時,△QMN為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(0,4),點B的坐標(biāo)為(4,0),點C的坐標(biāo)為(-4,0),點P在射線AB上運動,連結(jié)CP與y軸交于點D,連結(jié)BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當(dāng)點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標(biāo):如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(2,3),B(-3,n)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集______________;
(3)過點B作BC⊥x軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺.現(xiàn)將這50臺聯(lián)合收割機派往A、B兩地收割小麥,其中30臺派往A地,20臺派往B地.兩地區(qū)與該租賃公司商定的每天的租賃價格如下:

 
甲型收割機的租金
乙型收割機的租金
A地
  1800元/臺
  1600元/臺
B地
  1600元/臺
  1200元/臺
(1)設(shè)派往A地x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),請用x表示y,并注明x的范圍.
(2)若使租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分派方案,并將各種方案寫出.

查看答案和解析>>

同步練習(xí)冊答案