如圖,AD是⊙O的直徑.

(1)如圖①,垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則∠B1的度數(shù)是______°,∠B2的度數(shù)是______°;
(2)如圖②,垂直于AD的三條弦B1C1,B2C2,B3C3把圓周6等分,分別求∠B1,∠B2,∠B3的度數(shù);
(3)如圖③,垂直于AD的n條弦B1C1,B2C2,B3C3,…,BnCn把圓周2n等分,請(qǐng)你用含n的代數(shù)式表示∠Bn的度數(shù)(只需直接寫出答案).
(1)垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則
AC1
是圓的
1
8
,因而度數(shù)是45°,因而∠B1的度數(shù)是22.5°,同理
AC2
的度數(shù)是135度,因而,∠B2的度數(shù)是67.5°;(4分)

(2)∵圓周被6等分
B1C1
=
C1C2
=
C2C3
=360°÷6=60°(1分)
∵直徑AD⊥B1C1
AC1
=
1
2
B1C1
=30°,
∴∠B1=
1
2
AC1
=15°(1分)
∠B2=
1
2
AC2
=
1
2
×(30°+60°)=45°(1分)
∠B3=
1
2
AC3
=
1
2
×(30°+60°+60°)=75°;(1分)

(3)BnCn把圓周2n等分,則弧BnD的度數(shù)是:
360°
4n
,
則∠BnAD=
360°
8n
,
在直角△ABnD中,Bn=90°-
360°
8n
=90°-
45°
n
.(4分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直徑為OA的⊙P與x軸交于O、A兩點(diǎn),點(diǎn)B、C把
OA
三等分,連接PC并延長PC交y軸于點(diǎn)D(0,3).
(1)求證:△POD≌△ABO;
(3)若直線l:y=kx+b經(jīng)過圓心P和D,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,∠AOC=80°,則圓周角∠BDC的度數(shù)為( 。
A.40°B.50°C.60°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問題有哪些?(直接寫出兩個(gè)即可)
(2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在⊙O中,弦AC、BD相交于點(diǎn)E,且弧AB=BC,弧BC=CD,若∠BEC=130°,則∠ACD的度數(shù)為( 。
A.150B.30°C.80°D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A,B,C為⊙O上三點(diǎn),若∠OAB=50°,則∠ACB=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,C、D是以AB為直徑的⊙O上的兩個(gè)點(diǎn),∠ACD=15°,則∠BAD的度數(shù)為( 。
A.15°B.30°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AD是△ABC外接圓⊙O的直徑,AE是△ABC的邊BC上的高,DF⊥BC,F(xiàn)為垂足.
(1)求證:BF=EC;
(2)若C點(diǎn)是弧AD的中點(diǎn),且DF=3,AE=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,⊙O半徑為2,弦BD=2
3
,A為弧BD的中點(diǎn),E為弦AC的中點(diǎn),且在BD上,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案