(2012•葫蘆島一模)如圖,已知AB是半圓O的直徑,AB=10,點P是半圓周上一點,連接AP、BP,并延長BP至點C,使CP=BP,過點C作CE⊥AB,點E為垂足,CE交AP于點F,連接OF.
(1)當(dāng)∠BAP=30°時,求
BP
的長度;
(2)當(dāng)CE=8時,求線段EF的長;
(3)在點P運(yùn)動過程中,點E隨之運(yùn)動到點A、O之間時,以點E、O、F為頂點的三角形與△BAP相似,請求出此時AE的長度.
分析:(1)連接OP,利用圓周角定理可得出∠BOP=2∠BAP,然后代入弧長公式即可求出
BP
的長度.
(2)連接AC,則可判斷AP是線段BC的垂直平分線,在Rt△ACE中,求出AE,從而得出BE,再由Rt△AEF∽Rt△CEB,利用相似三角形的性質(zhì)即可得出EF的長度.
(3)若以點E、O、F為頂點的三角形與△BAP相似,則有∠EOF=∠PAB或∠EOF=∠ABP,然后分別求出AE的長度即可.
解答:解:(1)連接OP,

∵AB=10,
∴OB=5,
又∵∠BAP=30°,
∴∠BOP=60°,
BP
=
60×π×5
180
=
3

(2)連接AC,

∵AB是半圓O的直徑,
∴∠APB=90°,
又∵CP=BP,
∴AP是線段BC的垂直平分線,
∴AC=AB=10,
在Rt△ACE中,AE=
AC2-CE2
=
102-82
=6
,
∴BE=4,
又∵Rt△AEF∽Rt△CEB,
EF
BE
=
AE
CE
,
EF
4
=
6
8

∴EF=3.
(3)若以點E、O、F為頂點的三角形與△BAP相似,則有∠EOF=∠PAB或∠EOF=∠ABP,
①當(dāng)∠EOF=∠PAB時,此時△AOF為等腰三角形,點E為AO的中點,即AE=
5
2
;
②當(dāng)∠EOF=∠ABP時,OF∥BP,
此時OE=5-AE,BE=10-AE,
∵Rt△EOF∽Rt△EBC,
OE
EB
=
OF
BC
,
5-AE
10-AE
=
1
4

∴AE=
10
3
點評:此題屬于二次函數(shù)的綜合題,涉及了圓周角定理、勾股定理、相似三角形的判定與性質(zhì),本題的難點在第三問,注意分類討論,不要漏解,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•葫蘆島一模)二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于此二次函數(shù)的下列四個結(jié)論:①a+b+c<0;②c>1;③b2-4ac>0;④2a-b<0,其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•葫蘆島一模)(1)計算:(
1
2
)-1-3tan30°+(1-π)0+
12

(2)解分式方程:
2
x+1
=
x
x-1
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•葫蘆島一模)某校實施“每天一小時校園體育活動”,某班同學(xué)利用課間活動時間積極參加體育鍛煉,每位同學(xué)從長跑、籃球、鉛球、立定跳遠(yuǎn)中選一項進(jìn)行訓(xùn)練,訓(xùn)練前后都進(jìn)行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖表.

訓(xùn)練后籃球定時定點投籃測試進(jìn)球數(shù)統(tǒng)計表:
進(jìn)球數(shù)(個) 3 4 5 6 7 8
人數(shù) 2 8 7 4 1 2
請你根據(jù)圖表中的信息回答下列問題:
(1)請把選擇立定跳遠(yuǎn)訓(xùn)練的人數(shù)占全班人數(shù)的百分比填寫在項目選擇情況統(tǒng)計圖相應(yīng)位置上,該班共有同學(xué)
40
40
人;
(2)補(bǔ)全“訓(xùn)練前籃球定時定點投籃測試進(jìn)球數(shù)統(tǒng)計圖”;
(3)訓(xùn)練后籃球定時定點投籃人均進(jìn)球數(shù)
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•葫蘆島一模)如圖,拋物線y=ax2+bx+
152
(a≠0)
經(jīng)過A(-3,0),C(5,0)兩點,點B為拋物線頂點,拋物線的對稱軸與x軸交于點D.
(1)求拋物線的解析式;
(2)動點P從點B出發(fā),沿線段BD向終點D作勻速運(yùn)動,速度為每秒1個單位長度,運(yùn)動時間為t,過點P作PM⊥BD,交BC于點M,以PM為正方形的一邊,向上作正方形PMNQ,邊QN交BC于點R,延長NM交AC于點E.
①當(dāng)t為何值時,點N落在拋物線上;
②在點P運(yùn)動過程中,是否存在某一時刻,使得四邊形ECRQ為平行四邊形?若存在,求出此時刻的t值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案