已知a、b分別是6-
13
的整數(shù)部分和小數(shù)部分,求2a-b的值.
分析:先估算出
13
的取值范圍,進(jìn)而可求6-
13
的取值范圍,從而可求a,進(jìn)而求b,最后把a(bǔ)、b的值代入計(jì)算即可.
解答:解:∵
9
13
16
,
∴3<
13
<4,
∴2<6-
13
<3,
∴a=2,
∴b=6-
13
-2=4-
13
,
∴2a-b=2×2-(4-
13
)=
13

故答案為:
13
點(diǎn)評(píng):本題主要考查的是估算無(wú)理數(shù)的大小,解答此題的關(guān)鍵是先確定出無(wú)理數(shù)的整數(shù)部分,故可得出其小數(shù)部分,代入所求代數(shù)式進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知D、E分別是△ABC的邊AB、AC的中點(diǎn),DE=2,那么BC的長(zhǎng)是( 。
A、1B、2C、4D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

作圖題
(1)如圖1,已知?ABCD兩邊長(zhǎng)分別是1和2,一個(gè)內(nèi)角為60°,將?ABCD剪一刀成兩部分,并拼成一個(gè)等腰三角形.要求在原圖上畫(huà)出剪切線和組成的等腰三角形,并填寫(xiě)等腰三角形的周長(zhǎng)(本題不限作圖工具)
圖1,周長(zhǎng)=
6
6
                      
圖2,周長(zhǎng)=
2+2
17
2+2
17

(2)如圖2,已知正方形ABCD邊長(zhǎng)為2,將正方形剪兩刀成三部分,并拼成一個(gè)等腰非直角三角形,要求在原圖上畫(huà)出剪切線和拼成的三角形,并填出等腰三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

鄰邊不相等的矩形紙片,剪去一個(gè)正方形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形中減去一個(gè)正方形,又余下一個(gè)四邊形,稱為第二次操作;…,以此類(lèi)推,若第n次操作后余下的四邊形是正方形,則稱原矩形是n階矩形.如圖1,矩形ABCD中,若AB=1,AD=2,則矩形ABCD是1階矩形.
探究:(1)兩邊分別是2和3的矩形是
2
2
階矩形;
(2)小聰為了剪去一個(gè)正方形,進(jìn)行如下的操作:如圖2,把矩形ABCD沿著B(niǎo)E折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC的點(diǎn)F處,得到四邊形ABFE.請(qǐng)證明四邊形ABFE是正方形.
(3)操作、計(jì)算:
①已知矩形的兩邊分別是2,a(a>2),而且它是3階矩形,請(qǐng)畫(huà)出此矩形及裁剪線的示意圖,并在示意圖下方直接寫(xiě)出a的值;
②已知矩形的兩鄰邊長(zhǎng)為a,b,(a>b),且滿足a=5b+m,b=4m.請(qǐng)直接寫(xiě)出矩形是幾階矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知BE、CE分別是△ABC的內(nèi)角、外角的平分線,∠A=40°,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的兩邊分別是3和4,第三邊長(zhǎng)是方程x2-6x+5=0的根,試判斷這個(gè)三角形的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案