【題目】已知:如圖,在△ABC中,D、E分別是AB、BC邊上的中點(diǎn),過(guò)點(diǎn)C作CF∥AB,交DE的延長(zhǎng)線于F點(diǎn),連接CD、BF.
(1)求證:△BDE≌△CFE;
(2)△ABC滿足什么條件時(shí),四邊形BDCF是矩形?
【答案】(1)詳見(jiàn)解析;(2)當(dāng)BC=AC時(shí),四邊形BDCF是矩形,理由詳見(jiàn)解析
【解析】
(1)由平行線的性質(zhì)得出∠DBE=∠CFE,由中點(diǎn)的定義得出BE=CE,由ASA證明△BDE≌△CFE即可;
(2)先證明DE是△ABC的中位線,得出DE∥AC,證出四邊形BDCF是平行四邊形,得出AD=CF,證出CF=BD,得出四邊形BDCF是平行四邊形;再由等腰三角形的性質(zhì)得出CD⊥AB,即可得出結(jié)論.
(1)證明:∵CF∥AB,
∴∠DBE=∠CFE,
∵E是BC的中點(diǎn),
∴BE=CE,
在△BDE和△CFE中,
∴△BDE≌△CFE(ASA);
(2)解:當(dāng)BC=AC時(shí),四邊形BDCF是矩形,理由如下:
∵D、E分別是AB,BC的中點(diǎn)
∴DE是△ABC的中位線,
∴DE∥AC,又AF∥BC,
∴四邊形BDCF是平行四邊形,
∴AD=CF,
又BD=AD,
∴CF=BD,又CF∥BD,
∴四邊形BDCF是平行四邊形;
∵BC=AC,BD=AD,
∴CD⊥AB,即∠BDC=90°,
∴平行四邊形BDCF是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).
解決問(wèn)題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫(huà)出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF.
(1)求證:△AEH≌△CGF;
(2)若EG平分∠HEF,求證:四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組進(jìn)行了探究活動(dòng).如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.
(1)求這個(gè)梯子頂端A距地面有多高;
(2)如果梯子的頂端A下滑4 m到點(diǎn)C,那么梯子的底部B在水平方向上滑動(dòng)的距離BD=4 m嗎?為什么?
(3)亮亮在活動(dòng)中發(fā)現(xiàn)無(wú)論梯子怎么滑動(dòng),在滑動(dòng)的過(guò)程中梯子上總有一個(gè)定點(diǎn)到墻角O的距離始終是不變的定值,會(huì)思考問(wèn)題的你能說(shuō)出這個(gè)點(diǎn)并說(shuō)明其中的道理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11分)如圖,拋物線y=ax2+bx﹣3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,﹣3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
(1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線y=﹣x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由;
(4)當(dāng)E是直線y=﹣x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張長(zhǎng)為7cm,寬為5cm的矩形紙片上,現(xiàn)在剪下一個(gè)腰長(zhǎng)為4cm的等腰三角形,要求等腰三角形的一個(gè)頂點(diǎn)與矩形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在矩形的邊上,則剪下的等腰三角形一腰上的的高為_____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)了《展開(kāi)與折疊》這一課后,明白了很多幾何體都能展開(kāi)成平面圖形.于是他在家用剪刀展開(kāi)了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:
(1)小明總共剪開(kāi)了 條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在圖上補(bǔ) 全.(請(qǐng)?jiān)趥溆脠D中畫(huà)出所有可能)
(3)小明說(shuō):他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的4倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是720cm,求這個(gè)長(zhǎng)方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空并解答:
規(guī)定:a2=a×a,a3=a×a×a,an=a×a×…×a(n 個(gè) a)
(1)(2×3)2= ,22×32= ,你發(fā)現(xiàn)(2× 3)2 的值與 22×32 的值 .
(2)(2×3)3= ,23×33= ,你發(fā)現(xiàn)(2×3)3 的值與 23×33 的值 .
由此,我們可以猜想:(a×b)2 a2×b2,(a×b)3 a3×b3,…(a×b)n an×bn.
(3)利用(2)題結(jié)論計(jì)算(﹣2)2018×(﹣)2019 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com