【題目】已知:如圖,在△ABC中,D、E分別是AB、BC邊上的中點(diǎn),過(guò)點(diǎn)CCFAB,交DE的延長(zhǎng)線于F點(diǎn),連接CD、BF

1)求證:△BDE≌△CFE;

2)△ABC滿足什么條件時(shí),四邊形BDCF是矩形?

【答案】(1)詳見(jiàn)解析;(2)當(dāng)BCAC時(shí),四邊形BDCF是矩形,理由詳見(jiàn)解析

【解析】

1)由平行線的性質(zhì)得出∠DBE=∠CFE,由中點(diǎn)的定義得出BECE,由ASA證明△BDE≌△CFE即可;

2)先證明DE是△ABC的中位線,得出DEAC,證出四邊形BDCF是平行四邊形,得出ADCF,證出CFBD,得出四邊形BDCF是平行四邊形;再由等腰三角形的性質(zhì)得出CDAB,即可得出結(jié)論.

1)證明:∵CFAB,

∴∠DBE=∠CFE

EBC的中點(diǎn),

BECE

在△BDE和△CFE中,

∴△BDE≌△CFEASA);

2)解:當(dāng)BCAC時(shí),四邊形BDCF是矩形,理由如下:

D、E分別是AB,BC的中點(diǎn)

DE是△ABC的中位線,

DEAC,又AFBC,

∴四邊形BDCF是平行四邊形,

ADCF

BDAD,

CFBD,又CFBD,

∴四邊形BDCF是平行四邊形;

BCAC,BDAD

CDAB,即∠BDC90°,

∴平行四邊形BDCF是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).

解決問(wèn)題:

(1)如圖1,A=B=DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;

(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫(huà)出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;

拓展探究:

(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究ABBC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,□ABCD,點(diǎn)E、FG、H分別在邊AB、BC、CD、DA,AECG,AHCF

(1)求證:△AEH≌△CGF;

(2)EG平分∠HEF求證四邊形EFGH是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究性學(xué)習(xí)小組進(jìn)行了探究活動(dòng).如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.

(1)求這個(gè)梯子頂端A距地面有多高;

(2)如果梯子的頂端A下滑4 m到點(diǎn)C,那么梯子的底部B在水平方向上滑動(dòng)的距離BD=4 m嗎?為什么?

(3)亮亮在活動(dòng)中發(fā)現(xiàn)無(wú)論梯子怎么滑動(dòng),在滑動(dòng)的過(guò)程中梯子上總有一個(gè)定點(diǎn)到墻角O的距離始終是不變的定值,會(huì)思考問(wèn)題的你能說(shuō)出這個(gè)點(diǎn)并說(shuō)明其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(11分)如圖,拋物線y=ax2+bx﹣3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,﹣3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.

(1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)設(shè)直線y=﹣x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷AEF的形狀,并說(shuō)明理由;

(4)當(dāng)E是直線y=﹣x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張長(zhǎng)為7cm,寬為5cm的矩形紙片上,現(xiàn)在剪下一個(gè)腰長(zhǎng)為4cm的等腰三角形,要求等腰三角形的一個(gè)頂點(diǎn)與矩形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在矩形的邊上,則剪下的等腰三角形一腰上的的高為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為( 。

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)了《展開(kāi)與折疊》這一課后,明白了很多幾何體都能展開(kāi)成平面圖形.于是他在家用剪刀展開(kāi)了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:

1)小明總共剪開(kāi)了   條棱.

2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在圖上補(bǔ) 全.(請(qǐng)?jiān)趥溆脠D中畫(huà)出所有可能)

3)小明說(shuō):他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的4倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是720cm,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空并解答:

規(guī)定:a2a×a,a3a×a×aana×a×…×an 個(gè) a

(1)(2×3)2 ,22×32 ,你發(fā)現(xiàn)(2× 3)2 的值與 22×32 的值

(2)(2×3)3 ,23×33 ,你發(fā)現(xiàn)(2×3)3 的值與 23×33 的值

由此我們可以猜想:(a×b2 a2×b2,(a×b3 a3×b3,…(a×bn an×bn.

(3)利用(2)題結(jié)論計(jì)算(﹣2)2018×(﹣2019 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案