【題目】在平面直角坐標系xOy中,函數(shù)(x>0)的圖象與直線l1:交于點A,與直線l2:x=k交于點B.直線l1與l2交于點C.
(1) 當點A的橫坐標為1時,則此時k的值為 _______;
(2) 橫、縱坐標都是整數(shù)的點叫做整點. 記函數(shù)(x>0) 的圖像在點A、B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)為W.
①當k=3時,結合函數(shù)圖像,則區(qū)域W內(nèi)的整點個數(shù)是_________;
②若區(qū)域W內(nèi)恰有1個整點,結合函數(shù)圖象,直接寫出k的取值范圍:___________.
【答案】(1) ;(2)①3;②或.
【解析】
(1)將A代入函數(shù)(x>0)與l1:,即可求出;
(2)①畫出當k=3時,相應的圖象,由圖得到整點的個數(shù);
②分為點C在曲線(x>0)下方、上方兩種情況畫出符合題意的圖象,據(jù)圖寫出k需要滿足的條件.
解:設點,∵A在上,
.
.
點在函數(shù)的圖象上,
;
故答案為:.
(2)①當k=3時,作圖如下,
觀察圖象,區(qū)域W內(nèi)的整點個數(shù)是3;
②當點C在曲線(x>0)下方,如下圖,
區(qū)域W內(nèi)唯一的1個整點為(1,1),
只需滿足:當時,,
∴;
當點C在曲線(x>0)上方,如下圖,
區(qū)域W內(nèi)唯一的1個整點為(2,2),
只需滿足:且當時,,,
∴;
綜上所述:或.
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
如圖①,、是⊙的兩條弦, , 是的中點, ,垂足為.
求證: .
小敏在解答此題時,利用了“補短法”進行證明,她的方法如下:
如圖②,延長至,使,連接、、、、.
(請你在下面的空白處完成小敏的證明過程.)
推廣運用
如圖③,等邊內(nèi)接于⊙, . 是上一點, , ,垂足為,則的周長是__________.
拓展研究
如圖④,若將“問題提出”中的“是的中點”改成“是的中點”,其余條件不變,“”這一結論還成立嗎?若成立,請說明理由;若不成立,寫出、、三者之間存在的關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成3個扇形,分別標有1,2,3三個數(shù)字.小王和小李各轉(zhuǎn)動一次轉(zhuǎn)盤為一次游戲,當每次轉(zhuǎn)盤停止后,指針所指扇形內(nèi)的數(shù)為各自所得的數(shù),一次游戲結束后得到一組數(shù)(若指針指在分界線時重轉(zhuǎn)).
(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結果;
(2)求每次游戲后得到的一組數(shù)恰好是方程x2﹣4x+3=0的解的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)△ABC與△A′B′C′在平面直角坐標系中的位置如圖.
(1)分別寫出下列各點的坐標:A′ ; B′ ;C′ ;
(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到? .
(3)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應點P′的坐標為 ;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個整數(shù)點,其順序按圖中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根據(jù)這個規(guī)律探索可得,第90個點的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個長方形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗證( 。
A. (a+2b)(a﹣b)=a2+ab﹣2b2
B. a2﹣b2=(a+b)(a﹣b)
C. (a+b)2=a2+2ab+b2
D. (a﹣b)2=a2﹣2ab+b2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點G,連接AG,那么∠AGD的底數(shù)是______度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結論: ① 兩函數(shù)圖象的交點A的坐標為(3 ,3 ) ② 當 x > 3 時, ③ 當 x =1時, BC = 8
④ 當 x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結論的序號是_ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com