【題目】在平面直角坐標系xOy,函數(shù)(x>0)的圖象與直線l1:交于點A,與直線l2x=k交于點B.直線l1l2交于點C

(1) 當點A的橫坐標為1時,則此時k的值為 _______;

(2) 橫、縱坐標都是整數(shù)的點叫做整點 記函數(shù)(x>0) 的圖像在點A、B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)W

①當k=3時,結合函數(shù)圖像,則區(qū)域W內(nèi)的整點個數(shù)是_________

②若區(qū)域W內(nèi)恰有1個整點,結合函數(shù)圖象,直接寫出k的取值范圍:___________

【答案】(1) ;(2)3;②.

【解析】

1)將A代入函數(shù)(x>0)l1:,即可求出;

2)①畫出當k=3時,相應的圖象,由圖得到整點的個數(shù);

②分為點C在曲線(x>0)下方、上方兩種情況畫出符合題意的圖象,據(jù)圖寫出k需要滿足的條件.

解:設點,∵A上,


在函數(shù)的圖象上,

故答案為:.

(2)①當k=3時,作圖如下,

觀察圖象,區(qū)域W內(nèi)的整點個數(shù)是3;

②當點C在曲線(x>0)下方如下圖

區(qū)域W內(nèi)唯一的1個整點為(1,1),

只需滿足:當時,,

;

當點C在曲線(x>0)上方,如下圖

區(qū)域W內(nèi)唯一的1個整點為(2,2),

只需滿足:且當時,,,

;

綜上所述:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題提出

如圖①,、是⊙的兩條弦, , 的中點, ,垂足為

求證:

小敏在解答此題時,利用了補短法進行證明,她的方法如下:

如圖②,延長,使,連接、、、

(請你在下面的空白處完成小敏的證明過程.)

推廣運用

如圖③,等邊內(nèi)接于⊙, 上一點, , ,垂足為,則的周長是__________

拓展研究

如圖④,若將問題提出中的的中點改成的中點,其余條件不變,這一結論還成立嗎?若成立,請說明理由;若不成立,寫出、三者之間存在的關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成3個扇形,分別標有1,2,3三個數(shù)字.小王和小李各轉(zhuǎn)動一次轉(zhuǎn)盤為一次游戲,當每次轉(zhuǎn)盤停止后,指針所指扇形內(nèi)的數(shù)為各自所得的數(shù),一次游戲結束后得到一組數(shù)(若指針指在分界線時重轉(zhuǎn))

1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結果;

2)求每次游戲后得到的一組數(shù)恰好是方程x2﹣4x+3=0的解的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(6分)△ABC與△A′B′C′在平面直角坐標系中的位置如圖.

(1)分別寫出下列各點的坐標:A′ ; B′ ;C′ ;

(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到?

(3)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應點P′的坐標為

(4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,有若干個整數(shù)點,其順序按圖中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣13,根據(jù)這個規(guī)律探索可得,第90個點的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(ab)(如圖甲),把余下的部分拼成一個長方形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗證( 。

A. a+2b)(ab)=a2+ab2b2

B. a2b2=(a+b)(ab

C. a+b2a2+2ab+b2

D. ab2a22ab+b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CEBD交于點G,連接AG,那么∠AGD的底數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù) yl= x ( x 0 ) , x > 0 )的圖象如圖所示,則結論: 兩函數(shù)圖象的交點A的坐標為(3 ,3 ) x > 3 時, x 1時, BC = 8

x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結論的序號是_ .

查看答案和解析>>

同步練習冊答案